Semi-solid Alloys

Michel SUERY

Grenoble INP, SIMaP, Saint-Martin d’Hères, France

Michel.Suery@simap.grenoble-inp.fr
OUTLINE

• Basic considerations

• Two important aspects

 Microstructural characterisation

 Mechanical characterisation

• Key problems
Basic considerations

Partial melts in alloys

- During solidification
- During partial melting

Partition ratio

\[k_o = \frac{C_S}{C_L} \]
Main parameter = solid fraction f_s

Equilibrium: lever rule
$$f_s = \frac{(C_L-Co)}{(C_L-Cs)}$$

No solid diffusion: Scheil equation
$$C_s = ko \cdot Co \cdot (1-fs)^{(ko-1)}$$

Other parameters for the solid

- Size
- Morphology
- Solid-liquid interface area
- Connectivity of the solid particles
- …
Characterisation of the semi-solid state important:

⇒ For a better understanding of solidification mechanisms

⇒ For a better understanding of liquid phase sintering

⇒ For a better understanding of the hot tearing phenomenon that occurs in various processes (casting, welding, ...)

⇒ For the development of forming processes (intermediate between solid forming processes (forging, ...) and liquid forming processes (casting, ...)}
Two important aspects

Microstructural characterisation

Usually carried out

- after quenching of the specimens to room temperature
- on polished sections (in 2D)

Questions:

1. Is the solidified microstructure representative of the microstructure in the S/L region?

2. Are observations on 2D sections representative of the 3D microstructure?
Question 1: Is the solidified microstructure representative of the microstructure in the S/L region?

- Alloy is just at the eutectic temperature
 no problem: (liquid \rightarrow eutectic mixture)

- Alloy above the eutectic temperature
 problem: deposition of solid on the existing solid
 and then eutectic transformation
 \rightarrow solid fraction overestimated

Sometimes etching allows to distinguish the two primary solids (preexisting and that formed during quenching)
Al-6.8wt%Cu held at 628°C and cooled at various rates

Expected vol. fraction of Al-phase

Cooling rate ≥ 200°C/s
Question 2: Are observations on 2D sections representative of the 3D microstructure?

→ Yes for some parameters (solid volume fraction, size)

→ No for other parameters (connectivity)

Solutions:

• Serial sectioning (polishing) and 3D reconstruction
 • destructive
 • low resolution usually
 • but no specific equipment

• X-Ray tomography and 3D reconstruction (computed tomography)
 • non destructive
 • high resolution (synchrotron)
 • but specific equipment
Semi-solid alloys

Post mortem

- Several samples
- Scans at RT

Ex situ

- One sample
- Furnace out of tomograph

Semi-solid alloys

Solution
- to avoid quenching
- for 3D characterisation

Limitations:
- Good absorption contrast between solid and liquid (Al-Cu)
- Sufficient spatial and temporal resolution
Al-8%Cu
Solidification at 3°C.min⁻¹
1.4 µm, 600 images, ~60 s
ESRF ID19

RX
Camera CCD

1.5 mm
Al-8%Si-4%Cu-0.8%Fe
Solidification at 1.4°C.min$^{-1}$
1.4 µm, 600 images, ~36 s
ESRF ID19
β-Al$_5$FeSi particles

Mechanical characterisation

\[T_L \quad T_{coh} \quad T_{coal} \quad T_S \]

\[g_s = 1 \]

solidification
Two ranges of solid fractions are interesting:

Intermediate solid fractions (~ 40 à 60 %)

For semi-solid metal forming (rheoforming, thixoforming)

⇒ globular solid morphology

Large solid fractions (~ 80 à 95 %) for a better understanding of hot tearing phenomena
⇒ For modelling semi-solid metal forming (fs ~ 50%)

Various viscometers: Couette, Searle, cone and plate...

\[\eta = \eta (\eta_L, Fs, \text{shear rate}, \ldots) \]

Problem: usually determination carried out at steady state

Reality: injection of semi-solid alloy in a mold takes less than 1 s
For understanding hot tearing (Fs ~ 90%)

Mechanical tests during solidification with cooling rates similar to those corresponding to processes
- a few °C/s for casting
- several 100°C/s for welding (quite impossible)

Two types of tests:
- isothermal
- non isothermal
Tensile experiments on Al-Cu and 6061 aluminium alloy

Length ~ 12 cm
Diameter ~ 10 mm
Isothermal tests on Al-Cu alloys

- **Al-6%Cu** (fs =0.83)
- **Al-1%Cu** (fs =0.96)
- **Al-1%Cu** (fs =0.99)
Semi-solid alloys

- ○ Al-6wt.% Cu;
- ▲ Al-4wt.% Cu;
- □ Al-2wt.% Cu;
- + Al-1wt.% Cu

Cooling rate = 60K/min, displacement rate = 100mm/min

Isothermal tests on 6061 alloy

- **Remelting**
- **Solidification - 20K/s**
- **Solidification - 1K/s**

E. Giraud, M. Suéry, M. Coret
Met. Mat. Trans., 41A (2010) 2257-2268
Semi-solid alloys

![Graph showing ductility after peak vs solid fraction for remelting and solidification at 20K/s.](image-url)
displacement rate = 0.1 mm/s, cooling rate = 20 K/s

Fs = 0.95

Fs = 0.99
Non isothermal test on 6061 alloy: constrained solidification

Heating rate ~ 2 K/s
Strain accommodated

Cooling rate ~ 80 K/s
Grips of the machine fixed (constrained solidification)

Stress as a function of temperature

E. Giraud, M. Suéry, J. Adrien, E. Maire, M. Coret
3rd International Workshop “Hot Cracking Phenomena in Welds”
15-16 Mars 2010, Columbus, USA
Coalescence solid fraction ~ 0.97

Coherency solid fraction ~ 0.6
X-Ray tomography experiments during solidification with tensile deformation (ESRF)

Al-8%Cu, cooling

Optics: 1.4 μm, initial temperature: 555°C
Scan time: 13 s, time between scans: 32 s
0.25 μm/s, 0.25°C/min

Key problems

⇒ Modelling of semi-solid forming in the conditions of industrial forming

 = transient situation
 agglomerated microstructure ⇒ disagglomerated microstructure

⇒ Modelling of the mechanical behaviour of semi-solid alloys
at very high solid fractions (0.9 < Fs < 1)
 - models based on mechanics of continuous media
 - granular models

⇒ Hot tearing criterion
 - Stress > critical stress
 - Strain > critical strain
 - Liquid pressure < critical value
 - ...

⇒ Solidification mechanisms (complex alloys, high cooling rates,...)
 ⇒ X-Ray microtomography with good temporal resolution
Al-20%Cu

- PCO DIMAX camera
- Scan duration = 0.15s allowing a cooling rate of 5°C/s
- 2 μm optics
- 80 scans during solidification
Thank you for your attention