

Heat Treatment Processes

Sabine DENIS

Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine Parc de Saurupt, 54011 Nancy Cedex France

ANF Métallurgie fondamentale 22-25 oct 2012, Aussois

Problem of heat treatment of metallic alloys

Study Sogerail, Irsid, LSG2M, Cemef

Heat treatment of metallic alloys

Control of microstructures

→ desired mechanical properties

Control of thermal gradients

→ avoid/limit deformations

→ avoid/limit residual stresses (quenching) or obtain desired residual stress distributions (surface heat treatments, thermochemical treatments)

Better optimization = modelling and numerical simulation

Development of internal stresses during cooling qualitative approach (Rose et Bühler 1968)

> Origin of internal stresses : Heterogeneous deformations - thermal - phase transformations

Origin of residual stresses and deformations : Heterogeneous deformations - plastic - phase transformations

Example of experimental residual stress profiles

Water quenching of a 60NiCrMo11 steel cylinder (diameter 40mm, length 120mm)

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

1972...prediction of thermal stresses (Al alloys, Ti alloys) \approx 1980... main advances including phase transformations in steels \approx 2000... precipitation Al alloys - consideration of fluid flow (gaz quenching)

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

Overview of necessary experimental knowledge, present models, some open questions and example of results in steels

Modelling of phase transformation kinetics

(for the purpose of predicting internal stresses and deformations)

- Global models (JMAK): (1980 -1995)
- Modelling anisothermal kinetics from CCT diagrams
- Modelling kinetics from IT diagrams (additivity principle)

PHASE RC : prediction of kinetics during heating and cooling in steels from isothermal kinetics (additivity principle)

HEATING

IT diagram austenitization kinetics carbon content of austenite and grain size

COOLING : IT diagram

austenite — proeutectoïd constituent pearlite, bainite

 $\begin{array}{ll} \textbf{. incubation period : Scheil's method} & S = f_{inc} \, \Sigma \, \Delta t_i \, / \tau_i \\ \tau_i = f(\mathsf{T}, \, \text{grain size, comp., stress}) \end{array}$

. progress

n, b = f (T, grain size, comp., stress)

austénite —martensite : $y_m = y_{\gamma} [1 - exp(-\alpha (M_s - T))]$ Ms = f (grain size, comp., stress)

Hardness: $HV = \Sigma_{i,k} dy_k HV_k$ $HV_k = f(T_{formation}, comp.)$

PhD Fernandes, Farias, Mey...

Example : Gaz quenching of carburized cylinders

Cylinders diameter 16mm length 48mm steel 27MnCr5 Austenitization 930°C 40min Gaz quenching (nitrogen 4 bars)

Dissertation C. Aubry 1998

Kinetics of transformation

Ex. Prediction of microstructures during laser hardening of steels

Dissertation Boufoussi 1993

Hardness and microstructure distributions comparison calculation-experiment

depth HAZ: exp. 0,85mm calculation 1,06mm

width HAZ : exp. 8,4mm calculation 8,5mm

Modelling of phase transformation kinetics

(for the purpose of predicting internal stresses and deformations)

- Global models (JMAK): most commonly used for steels
- Modelling anisothermal kinetics from CCT diagrams
- Modelling kinetics from IT diagrams (additivity principle)

can predict volume fractions of the phases for complex situations — limitations : no morphological parameters of the microstructures

difficult to take into account prior plastic deformation effects

- Nucleation, growth, coarsening models
- precipitation in Al alloys D. Godard 1999
- tempering of martensite in steels Y. Wang 2006

volume fractions of the precipitates, size distributions matrix chemical composition

Modelling of phase transformation kinetics : nucleation, growth, coarsening

Multicomponent alloys - concommittant precipitations

- thermodynamic equilibrium :

. solubility product (stochiometric compositions) or coupling with THERMOCALC

- nucleation rate

homogeneous/heterogeneous nucleation, take account of elastic strain energy

- growth (dissolution) coarsening rates

diffusion controlled local equilibrium at interfaces Gibbs Thomson effect and effect of elastic strain energy

\rightarrow

Results

volume fractions of the precipitates size distributions matrix chemical composition

during the treatments isothermal and anisothermal

Modelling of precipitation during tempering of martensite in steels

 ε carbides (Fe_{2,4}C) coherent, homogeneous nucleation, cementite (Fe,M)₃C) incoherent, heterogeneous nucleation (disloc.)

600

0,15

Temps (s)

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

Bainitic transformation under stress (thermomechanical simulator DITHEM)

Variations of times corresponding to

Acceleration of the transformation : increase of nucleation rate and modification of growth rate

Mechanisms of transformation plasticity

- plastic accommodation of tranformation strains
- orientation of transformation product

Transformation deformation versus applied stress

bainite formed at 350°C under 310MPa

Phenomenological modelling of the coupling between internal stress states and transformation kinetics

During heat treatment material is under triaxial stress states, small plastic deformations

For diffusion dependent transformations effect of plastic strain and pressure can be assumed negligible acceleration of the transformation due to stress

 $D_{\sigma} = \Delta t/t_0 = h(\sigma_e)$ σ_e Von Mises stress h experimental function

Incubation period : $\tau_{\sigma} = \tau (1+D_{\sigma})$ (Scheil's method) Progress of transformation : $n_{k\sigma} = n_k$ $b_{k\sigma} = b_k/(1+D_{\sigma})n_k$ (JMKA law)

For martensitic transformation

Effect of plastic strain assumed negligible in comparison with stress effect Variation of Ms with stress state

 $\Delta M_s = A\sigma_m + B\sigma_e$ A and B constants (Inoue)

Ex effect of internal stress – kinetics interaction

Ex. effect of the internal stress-kinetics interaction

Hardness profiles

- important effect in a massive specimen
- prediction not fully satisfactory

need of better knowledge of the effect of complex thermomechanical paths

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

Calculation of stress and strain fields

Hyp. small deformations, material homogeneous isotropic Stress equilibrium Compatibility of deformations

Behavior law of the material

 \checkmark

Effect of phase transformations

- change of mechanical properties
- additionnal deformations : volumic variations and transformation plasticity

Thermomechanical behaviour during phase transformation

Macroscopical phenomenological approach

Take into account the different sources of deformations

Macroscopical phenomenological approach

$$d\varepsilon_{ij}^{t} = d\varepsilon_{ij}^{e} + d\varepsilon_{ij}^{p} + d\varepsilon_{ij}^{th} + d\varepsilon_{ij}^{tr} + d\varepsilon_{ij}^{pt}$$

Elastic^{*}strain

 $d\epsilon_{ij}^{e}$ Hooke's law E, v = f (temperature, microstructure) Mixture law

plastic/viscoplastic strains :

classical theory, Von Mises yield criterion and associated flow rule, isotropickinematic hardening rules

For each phase $\sigma_{k} = \sigma_{0k} + H_{k} \epsilon_{vp}^{nk} + K_{k} \dot{\epsilon}_{vp}^{mk}$

 $\sigma_0(T)$ threshold stress hardening : H(T), n(T) viscous stress : K(T), m(T)

for multiphase material : mixture law $\sigma = \sum y_k \sigma_k$

Thermomechanical behaviour of the different phases/constituents at different temperatures and strain rates

Macroscopical phenomenological approach

$$d\varepsilon_{ij}^{t} = d\varepsilon_{ij}^{e} + d\varepsilon_{ij}^{p} + d\varepsilon_{ij}^{th} + d\varepsilon_{ij}^{tr} + d\varepsilon_{ij}^{pt}$$

Elastic^{*}strain

 $d\epsilon_{ij}^{e}$ Hooke's law E, v = f (temperature, microstructure) Mixture law

plastic/viscoplastic strains :

classical theory, Von Mises yield criterion and associated flow rule, isotropickinematic hardening rules

For each phase $\sigma_{k} = \sigma_{0k} + H_{k} \epsilon_{vp}^{nk} + K_{k} \dot{\epsilon}_{vp}^{mk}$

 $\sigma_0(T)$ threshold stress hardening : H(T), n(T) viscous stress : K(T), m(T)

for multiphase material : mixture law $\sigma = \sum y_k \sigma_k$

question : strain hardening full or partial loss of memory during phase transformation? (Sjöström, Leblond, Taleb...)

Modelling of transformation plasticity

- Phenomenological approach:

Experimental evolution law (uniaxial stress) : $\epsilon^{pt} = K_k \sigma f(y_k)$ Generalization to triaxial stress states : **assumption de**^{pt} **proportional to stress deviator** *Giusti*

 $d\epsilon_{ij}^{pt} = 3/2 K_k f'(y_k) dy_k s_{ij}$

holds when the mechanism only plastic accommodation

For diffusional transformation :

- no experimental results under mutiaxial stresses
- validation by micro macro approaches Leblond, Fischer, Sjöström, Ganghoffer, Barbe

For martensitic transformation :

- experimental results : transform. plasticity larger under tensile stress than under compressive stress *Videau*
- micromechanical approach show clearly strong dependency on local stresses Wen

→ formulation of a macroscopical law still an open question (N phase model, Cailletaud 2004)

Experimental validation of the macroscopical behaviour law for steel

$$d\varepsilon_{ij}^{t} = d\varepsilon_{ij}^{e} + d\varepsilon_{ij}^{p} + d\varepsilon_{ij}^{th} + d\varepsilon_{ij}^{tr} + d\varepsilon_{ij}^{pt}$$

۰J

÷J

-J

٠J

۰j

۰j

PhD J. Ch. Louin

Modelling of the thermomechanical behaviour during precipitation

 $\sigma_{disl.}$ hardening due to dislocation densities f(T, t)

PhD Godard 1999 (Al) PhD Y. Wang 2006 (steel)

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

Modelling of heat transfer in the solid

Heat conduction equation : div (λ gradT) + q^{tr} = $\rho c_p \delta T/\delta t$

- q^{tr} power density associated with phase transformations $q^{tr} = \sum \Delta H_k dy_k/dt$
- mixture laws for thermophysical properties

 $\lambda = \sum \lambda_k y_k$ $c_p = \sum c_{pk} y_k$ $\rho = \sum \rho_k y_k$ y_k volume fraction of phase k

Modelling of heat transfer in the solid

Heat conduction equation : div (λ gradT) + q^{tr} = $\rho c_p \delta T/\delta t$

- q^{tr} power density associated with phase transformations $q^{tr} = \sum \Delta H_k dy_k/dt$
- mixture laws for thermophysical properties

$$\lambda = \sum \lambda_k y_k \qquad c_p = \sum c_{pk} y_k \qquad \rho = \sum \rho_k y_k$$

- surface boundary condition for quenching : $\Phi = -\lambda (\partial T / \partial n) = h (T_S - T_{\infty})$

Heat transfer in vaporizable fluids (water, oil, ...)

h (surface temperature, temperature and agitation of the bath, surface state, position of the piece ...) difficult to determine \longrightarrow inverse methods

Ex : quenching in cold water (cylinder diameter 35mm length 105 mm steel 35MnV7

Modelling of heat transfer in the solid

Heat conduction equation : div (λ gradT) + q^{tr} = $\rho c_p \delta T/\delta t$

- q^{tr} power density associated with phase transformations $q^{tr} = \sum \Delta H_k dy_k/dt$
- mixture laws for thermophysical properties

 $\lambda = \sum \lambda_k y_k$ $c_p = \sum c_{pk} y_k$ $\rho = \sum \rho_k y_k$ y_k volume fraction of phase k

- surface boundary condition for quenching : $\Phi = -\lambda (\partial T / \partial n) = h (T_S - T_{\infty})$

Promising approaches : coupling with fluid flow simulations gaz quenching heating in furnace

Modelling of flow and heat transfer in the gaz (code Fluent)

Solution of equations

- Navier-Stokes
- continuity
- heat transport
- turbulence transport : chosen model : k- ω

thermophysical properties of gaz: dynamic viscosity, thermal conductivity, density, specific heat

Prediction of the local wall heat transfer coefficient distributions

surface boundary condition for the solid :

 $\Phi_{\text{loc}} = -\lambda \left(\partial T / \partial n \right) = h_{\text{loc}} \left(T_p - T_{\infty} \right)$

Coupling with simulations in the solidUnsteadyCoupling between FLUENT
and SYSWELD Δt_r simulation in the
gas phasehThHittin Hittin Hitt

solid phase

J.F. Douce, J.P. Bellot, S. Denis, F. Chaffotte, G. Pellegrino HTM 61 (2006)

Fluid – thermal – metallurgical – mechanical couplings in heat treatment

2 examples : gaz quenching quenching and tempering

Application example : gaz quenching

J.F. Douce, J.P. Bellot, S. Denis, P. Lamesle, F. Gouhinec, F. Chaffotte, G. Pellegrino, Int. J. Microstructures and Material Properties Vol.3, n°1, 2008

4.5 bar helium gaz quenching velocity vectors

4.5 bar helium gaz quenching of a nickel cylinder

In-situ measurements of the deformation

Comparison measurements - calculation

Final shape

Distributions of microstructures

Residual stresses

Chain different processes : quenching + tempering (FE code ZeBuLon)

Residual stress profiles after water quenching Role of stress – phase transformation interactions

Relaxation of quenching residual stresses during tempering

PhD Y. Wang, Nancy, 2006

Evolutions of stress profiles during tempering

End of quenching X20 100 160 -200 -120 -40 0 40

End of heating

PhD Y. Wang, Nancy, 2006

Conclusion - Future developments

• Material point of view

- metallurgical models

. global models work for industrial metallic alloys and complex situations \rightarrow prediction of volume fractions

. models including nucleation and growth develop more and more for multicomponent alloys

 → volume fractions and morphological parameters allow prediction of mechanical properties (Al alloys, Ti alloys...)

. take into account chemical composition gradients (carburizing, carbonitriding, solidification segregations)

. effects of prior plastic deformations, effect of stresses

Conclusion - Future developments

- thermomechanical behaviour with phase transformations

. phenomenological laws exist extension to other metallic alloys (Ti alloys...) better description of multiphase material (morphology) micro-macro approaches must be further developped

• Heat treatment processes

- **coupling between fluid and solid :** *developments for vaporizable fluids (experiments and modelling)*
- include heating processes (furnace, induction...)
- in situ measurements (solid + fluid) for rapid processes
- chain different processes :

liquid metal processing + solidification + forming + heat treatment...

• Numerical aspects

Two review papers S. Denis, Revue de Métalurgie CIT/SGM, février 1997, pp. 157-176 S. Denis, P. Archambault, E. Gautier, A. Simon, G. Beck, JMEPG Vol 11 (1), 2002, pp. 92-102

Common work with

A. Simon, E. Aeby-Gautier, P. Archambault, J.P. Bellot, B. Appolaire

PhD students :

FMB Fernandes, C. Basso, J.P. Josserand, D. Farias, F. Saliou, M. Boufoussi,J.F. Ganghoffer, Y. Wen, L. Massicart, M. Zandona, A. Mey, P. Brunet, C. Aubry,J. Ch. Louin, M. Veaux, Y. Wang, Y. Renault, J.F. Douce, M. Haering, L. Mangin,S. Devynck, S. Catteau...

In the frame of industrial collaborations

CETIM, ARBED, UNIMETAL RECHERCHE, PSA, RENAULT, Creusot Loire Industrie, French Programme SIMULFORGE, European programme VHT, Ascometal, Air Liquide SNR, Vallourec, ...