Les matériaux cellulaires : les mousses métalliques

L. Salvo

Outline

- Introduction
- Elaboration
- Mechanical properties
- "Material by Design"
- Conclusion

Intro

Metal foams are highly porous materials

Architecture : closed, open, mixed ...

Closed cells foam

mixed

Open cell foams

Cell size ranges from 50 μm to several $\,$ cm

Intro

US Paten 2,434,775 B. Sosnic 1948 Alloy mixing	t No. Cellula 5, New Co k, Provide Possibi Age, A Salt pr o infiltra	r Materials: oncepts e Unique lities, The Iror rticle Feb, 196 eform tion	n 52.	Norskhydro Duralcan Alporas USA Norvège Angleterre			
1950	1960	1970	1980	1990	2000	2010	
US Patent No. 3,087,807, Benjamin C Alen <i>et al</i> , 1963		US Patent No. 3,300, Paul W Ha Glenn W P 1967.	US Patent No. 3,300,296, Paul W Hardy Glenn W Peisker, 1967.		These foa are excitin	ms g !!	
Powder metallurgy + foaming agent		gy Liquid met + foaming	 Liquid metal + foaming agent 		Paris. Lvon		

Paris, Lyon Grenoble

Source : http://www.msm.cam.ac.uk/mmc/people/old/dave/dave.html

Closed cells foam

ALPORAS (Japon) : foaming agent in liquid metal

Material : Aluminium - Calcium Relative density : 0.1 - 0.5Closed cells large ingot

Source : metal foam a design guide : M. Ashby et al

HYDRO – CYMAT (Norvège, Canada) : gaz injection in liquid metal

Material : metal matrix composites Relative density : 0.1 – 0.4 Closed cells 3D shape possible sandwich Medium reproducibility

www.cymat.com

Source : metal foam a design guide : M. Ashby et al

HYDRO – CYMAT (Norvège, Canada)

www.cymat.com

Weight gain up to 40 %

Passive protection

Hanssen, A.G., *Structural Crashworthiness of Aluminum Foam-Based Components*, Ph.D. Thesis, Norwegian University of Science and Technology, June 2000. Bellora, V.A., Krauss. R., and Van Poolen, L., "Meeting Interior Head Impact Requirements: A Basic Scientific Approach", SAE Technical Paper Series: *Progress in Safety Test Methodology* (SP-1596), 2001.

IFAM – ALuLight (Allemagne, Autriche) : powder metallurgy + foaming agent

Material : aluminium alloys Relative density : 0.15 – 0.5 Closed cells in plate form Shaping possible Good reproducibility

www.metal-foam.de

Source : metal foam a design guide : M. Ashby et al

IFAM – ALuLight (Allemagne, Autriche)

US Patent No. 2,434,775, B. Sosnick,	Cellular Materials: New Concepts Provide Unique			Norskhydro Duralcan Alporas		"New" Elaboration technique	
1948 Alloy mixing	Possibiliti Age, Arti Salt prefo infiltratio	es, The Iron cle Feb, 1962 orm n	2.	USA Norvèg Anglete	e erre	Architecture Control Reproducibility	
1950 19	960	1970	1980	1990	2000	2010	
US Patent No. 3,087,807, Benjamin C Alen <i>et al,</i> 1963		US Patent No. 3,300,296, Paul W Hardy Glenn W Peisker, 1967.		60	These are ex	foams citing !!	

Powder metallurgy Liquid metal + foaming agent + foaming agent

Source : http://www.msm.cam.ac.uk/mmc/people/old/dave/dave.html

EPFL / Constellium : like salt preform infiltration

R. Goodall and A. Mortensen, "Microcellular Aluminium? - Child's Play!", *Advanced Engineering Materials,* vol. 9 (11), pp. 951-954 (2007).

Fast dissolution Various preform morphology

Material : aluminium alloys Relative density: 0.1 – 0.4 Open cell foams Various architecture Very good reproducibility

CTIF : like salt preform infiltration (CASTFOAM)

Material : cast alloys Relative density : 0.1 – 0.4 Open cell foams Architecture control Very good reproducibility

J. Dairon, Y. Gaillard, J.-C. Tissier, D. Balloy, G. Degallaix, « Parts containing open-celled metal foam manufactured by the foundry route: Processes, performances and applications », Advanced Engineering Materials 13, (2011).

PLANSEE (Austria)

PLANSEE (Autriche)

Fraunhofer _{Institut} Fertigungstechnik Materialforschung

IFAM

Outline

- Introduction
- Elaboration
- Mechanical properties
- "Material by Design"
- Conclusion

Properties

Mechanical or physical properties follow scaling laws

But differences between simulatin/experiments

Numerical microstructures / model is not representative of real foam

Tomography + simulation (E.Maire, S. Forest)

Ps is generally not well known

Metallurgy (very few studies ...)

Properties

Tensile behaviour of an ERG foam [Zhang et al AEM 2013]

Microstructural information is needed at the struts level

Outline

- Introduction
- Elaboration
- Mechanical properties
- "Material by Design"
- Conclusion

Architecture control : large number of degree of freedom Architecture control : large number of degree of freedom

Closed cells : mechanical Open cells : acoustic

> Sphere size ? Thickness ? Density ? Contact size ?

Programme ASTRA CNRS /ONERA (2006-2010)

YES

of real hollow sphere packing ?

- 1) It is better to increase contact between sphere than increase thickness
- 2) Possible gain on the real structure (PLANSEE)

Mécanique (FEM+DEM)

Acoustique (GEODICT)

3) Weight gain of 20% possible if acoustic is taken into account

[Fallet et al scripta mat 2012]

Conclusion

- Lack of microstructural information in modelling or numerical simulation
- New foam processes allow architecture control (but which structure for a set of requirements ?)

 Material substrate for multifunctionnal application (energy, building, bio ...)

Material by design coupled with multi resolution tomography may help

To know more about cellular solids and metal foam

Cellular solids

Structure and properties - Second edition

Lorna J. Gibson and Michael F. Ashby

Michael E. Addry Anthooy Escan Norman A. Fleck Loruz J. Gibson John W. Hanchisson Haydn N.G. Wadley

Handbook of Cellular Metals

Production, Processing, Applications

Edited by Dars Peter Depischer and Depitte Krisst

Andreas Öchsner Christian Augustin (Eds.)

Multifunctional Metallic Hollow Sphere Structures

Manufacturing, Properties and Application

Aknowledgements

- Y. Bréchet
- C. Martin, R. Dendievel
- P. Lhuissier, A. Fallet
- T. Zhang
- E. Maire (MATEIS)
- A. Mortensen (EPFL)
- A. Wigmann (GEODICT)

Programme ASTRA CNRS /ONERA Cluster MACODEV

And you for your attention