Le changement de phase liquide → solide

**Charles-André GANDIN** 



MINES ParisTech CEMEF UMR CNRS 7635 06904 Sophia Antipolis, France

Action Nationale de Formation « METALLURGIE FONDAMENTALE » 22-25 octobre 2012, Aussois, France

## **Statistics**

# Introduction

Alloys are produced by primary melting and transformed by secondary melting, thus involving the liquid-to-solid phase transformation

## Primary production of alloys in 2010

|                 | Fe     | AI    | Cu    | Zn    | Pb    | Ni    | Sn  |
|-----------------|--------|-------|-------|-------|-------|-------|-----|
| World (Mtons)   | 1'518  | 40.4  | 14.6  | 12.9  | 8.8   | 1.4   | 0.3 |
| France (Mtons)  | 15.8   | 0.421 | 0.428 | 0.163 | 0.088 | 0.107 | -   |
| France (people) | 23'800 | 3'594 | 3'600 | -     | -     | 4'300 | -   |

www.societechimiquedefrance.fr

## Solidification is part of metallurgy textbooks

- "Métallurgie: du minerai au matériau", J. PHILIBERT, A. VIGNES, Y. BRÉCHET, P. COMBRADE, Dunod (Paris, FR) 2002.
- "Solidification", J. A. DANTZIG, M. RAPPAZ, EPFL Press (Lausanne, CH) 2009.
   www.solidification.org

## **Statistics**

# Introduction

## Laboratories/People in France

- GdR CNRS 3328 « Solidification des Alliages Métalliques » (COMBEAU)
  - « Formation des microstructures » (BILLIA, AKAMATSU, LACAZE, DALOZ)
  - « Dynamique de la zone pâteuse » (RAPPAZ, ZALOZNIK, SUERY)
  - « Procédés » (GANDIN, FAUTRELLE, DREZET, PEYRE, BIGOT, DUFFAR)

| Laboratory             | People | Section CN | Laboratory                  | People | Section CN |
|------------------------|--------|------------|-----------------------------|--------|------------|
| IJL, Nancy             | 4      | 15         | CEMEF, Sophia Antipolis     | 3      | 9, 15      |
| CIRIMAT, Toulouse      | 2      | 15         | CDM, Evry                   | 1      | 9, 15      |
| SIMAP, Grenoble        | 4      | 15 (9,10)  | PIMM, Paris                 | 5      | 9, 10      |
| ICMB, Bordeaux         | 4      | 15, 10     | LCFC, Metz                  | 3      | 9          |
| ICB, Dijon             | 4      | 14, 15     | LMGC, Montpellier           | 3      | 9          |
| EM2C, Châtenay-Malabry | 2      | 10         | IM2NP, Marseille            | 7      | 5, 15      |
| TREFLE, Pessac         | 2      | 10         | INSP, Paris                 | 3      | 5          |
| IRPHE, Marseille       | 3      | 10         | LPMC, Palaiseau             | 2      | 5          |
| LSMX, Lausanne, CH     | 3      |            | CEA-INES, Le Bourget-du-Lac | 6      |            |

http://spinonline.free.fr/GDR

Commission SF2M « Coulée et Solidification » (JARRY)

## Processes

# Introduction

## Semi-finished products

 continuous, semi-continuous, ingots (casting)

# CC of steel







semi-CC of aluminum ingot casting of steel

# Near-net-shape products

- expendable: sand, plaster, shell, plaster, investment, loast foam (casting)
- non-expendable: centrifugal, semi-solid, die, permanent mold (casting)

## Assembly

4

- welding (TIG, MIG, MAG, laser, …)
- soldering, brazing



tungsten inert gas welding



sand casting of steel



cast engine block



investment shell



cast turbocharger rotor

## Defects

Introduction

- Part integrity (cracks, misruns, ...)
- Structure selection (columnar, equiaxed, dendritic, eutectic, ...)
- Phase selection (nature and size)
- Crystallographic texture (fiber)
- Segregation (inverse, buoyancy forces, grain sedimentation, intergranular, interdendritic, freckles, ...
- Porosity (hot spot, shrinkage, gas)
- Residual stresses
- Hot tears



columnar-to-equiaxed transition





cold crack in semi-CC of aluminum



stray grain in a "single crystal" turbine blade



hot tear in weld

## **Structures**

# Structures formed from a binary melt

- dendritic,  $I_1 \rightarrow \alpha + I_2$  (monovariant reaction),
- peritectic,  $I + \alpha \rightarrow \beta$  (invariant reaction),
- eutectic,  $I \rightarrow \alpha + \beta$  (invariant reaction),
- congruent,  $I \rightarrow \alpha$  (invariant reaction),
- monotectic,  $I_1 \rightarrow I_2 + \alpha$  (invariant reaction).

# Selection and fraction of structures and phases are influenced by

- alloy composition (industrial = multicomponent),
- departure from thermodynamic equilibrium (nucleation and growth undercooling),
- diffusion in phases (with D<sup>s</sup> << D<sup>l</sup>),
- phase flow (melt <u>and</u> solid),
- heat flow (temperature gradient, isotherm velocity).

Dendritic (cast AIMgFeSi Al<sub>3</sub>Ni+Al



Peritectic

(cast AlSi

(atomized NiAI)





# Introduction

## **Segregations**

7

# Segregations form due to

thermodynamic equilibrium between phases with different solubility of species, defined by the segregation coefficient  $k=(X^{s}/X^{l})_{Tn}$ 

# Main outputs of segregation studies

- composition profile and average composition of phases,
- fraction of structures and phases,
- fraction of phases in each structure,
- solidification path (above information as a function of temperature from  $T_1$  to  $T_2$ )

# Simple examples of solidification paths, with common assumption a uniform liquid composition (D<sup>I</sup>>>0)

- Lever Rule (LR): equal chemical potentials of all species in all phases (D<sup>s</sup>>>0)
- Gulliver-Scheil (GS): same as LR at the s/l interface with D<sup>s</sup>=0
- Partial Equilibrium (PE): mixture of GS for substitutionals and LR for interstitials





# Introduction



# Methodologies

# Introduction

| Methods<br>Scales | Indirect Trac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | king Direct                                                                                          |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|
|                   | Volume averaging over a multiphase domain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tracking of domain boundaries                                                                        |  |  |
| Macroscopic       | Solidification paths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solidification paths<br>Interface kinetics                                                           |  |  |
|                   | Continuum<br>mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mush-liquid<br>boundary<br>Structure kinetics<br>for the prediction<br>of grain size<br>distribution |  |  |
| Grain             | Volume averaging over each<br>independent phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tracking of phase interfaces                                                                         |  |  |
| Microscopic       | $\int_{i} \int_{i} \int_{i$ | Solid-liquid<br>interface<br>Diffuse interface<br>for the prediction<br>of microstructure            |  |  |

![](_page_9_Picture_0.jpeg)

## Introduction

- Statistics, Processes & Defects
- Structures & Segregations
- Scales & Methodologies
- Direct microscopic methodology
- Indirect microscopic methodology
  - Observations: electromagnetic levitation and atomization
  - Kinetics modeling coupled with equilibrium calculations
  - Applications and current extensions
- Indirect macroscopic methodology
  - Phase field modeling of microstructures
- Direct macroscopic methodology
  - CAFE modeling
  - Application to ESRF observations
  - Application to directionally solidified grain structure
  - Application to a macrosegregation benchmark experiment

# Perspectives

# **Direct microscopic methodology**

- The phase field method tracks to phase interfaces
- Applications to solidification include quantitative studies on structure dynamics (PLAPP, Ecole Polytechnique, Palaiseau)

![](_page_10_Figure_3.jpeg)

Directional solidification in a dilute alloy

www.solidification.org

![](_page_10_Picture_6.jpeg)

Non-faceted eutectic structure

![](_page_10_Picture_8.jpeg)

Equiaxed solidification in pure substance

Most developed models consider multicomponent alloys and multiple phase transformations coupled with thermodynamic databases (Code MICRESS, ACCESS, Aachen, DE)

# Limits of interface tracking

# **Direct micro**

## Biggest phase field result for a network of dendrites in AI-Si?

![](_page_11_Picture_3.jpeg)

Size is given by the number of grid point: 4096x1024x4096 (only few cubic millimeters!)

Parallel computation with up to 4'000 GPUs and 16'000 CPUs, reaching 2 petaFLOPS

GPU = Graphics Processing Unit, CPU = Central Processing Units, petaFLOPS = 10<sup>15</sup> FLoating point Operations Per Seconds

T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A. Nukada, T. Endo, N. Maruyama, S. Matsuoka, Proceedings of the 2011 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC'11, IEEE Computer Society, Seattle, WA, USA, Nov. 2011.

# Indirect microscopic methodology

## Collaborations

- D. TOURRET, MINES ParisTech, Sophia Antipolis
- D. HERLACH, Th. VOLKMANN, D. TOURRET, DLR, Köln, DE
- M. CALVO-DAHLBORG, U. DAHLBORG, C. M. BAO, University, Rouen
- G. REINHART, University Paul Cézanne, Marseille,
- G. N. ILES, ESRF/ILL, Grenoble

# Funding

- European Community, Brussels, BE
- European Space Agency, Noordwijk, NL
- Bundesvereinigung Materialwissenschaft und Werkstofftechnik e.V., Berlin, DE
- Deutsche Forschungsgemeinschaft, Bonn, DE

13Tourret et al., Acta mater. 2009 57 2066, Acta mater. 2011 59 4665, Acta mater. 2011 59 6658

## **Observations**

# **Indirect micro**

![](_page_13_Figure_2.jpeg)

# Modeling

# **Indirect micro**

## Concurrent multiple phase transformations

(Rappaz&Thévoz 1987, Wang&Beckermann 1993, Appolaire et al. 2008)

- Constant and equal density in all phases
- Uniform T with heat exchange rate Q
- Zones & phases defined by boundaries & interfaces
  - 。 (0): I<sup>(0)</sup> (1): s<sub>1</sub><sup>(1)</sup>+I<sup>(1)</sup>
  - (2):  $s_1^{(2)} + s_2^{(2)} + I^{(2)}$
  - $\circ (3): s_1^{(3)} + s_2^{(3)} + s_3^{(3)}$
- Microstructure propagation at zone boundaries with growth kinetics
  - $\circ$  s<sub>1</sub>: dendritic
  - s<sub>2</sub>: peritectic
  - $\circ$  s<sub>3</sub>: eutectic
- Thermodynamic equilibrium at phase interfaces
- Unknowns: average composition and phase fractions

![](_page_14_Figure_17.jpeg)

# Modeling

# Indirect micro

on interface  $(\alpha\beta)$ :  $v_n^{\alpha\beta} + v_n^{\beta\alpha} = 0$ 

#### Average total mass

over phase ( $\alpha$ ) :

![](_page_15_Picture_4.jpeg)

Average solute mass

over phase ( $\alpha$ ) :

$$\underline{g^{\alpha}} \underbrace{\frac{\partial}{\partial t}} (\langle w^{\alpha} \rangle^{\alpha}) = \sum_{\beta \ (\beta \neq \alpha)} \left[ \underline{S^{\alpha\beta}} (w^{\alpha\beta} - \langle w^{\alpha} \rangle^{\alpha}) \left( v^{\alpha\beta}_{n} + \frac{\underline{D^{\alpha}}}{\underline{l^{\alpha\beta}}} \right) \right]$$
$$\underbrace{(w^{\alpha\beta} - w^{\beta\alpha})}_{\mu} v^{\alpha\beta}_{n} + \frac{\underline{D^{\alpha}}}{\underline{l^{\alpha\beta}}} (w^{\alpha\beta} - \langle w^{\alpha} \rangle^{\alpha}) + \frac{\underline{D^{\beta}}}{\underline{l^{\beta\alpha}}} (w^{\beta\alpha} - \langle w^{\beta} \rangle^{\beta}) = 0$$

#### on interface $(\alpha\beta)$ :

#### Average energy balance

Global heat balance:

16

$$\rho \frac{\partial \langle H \rangle}{\partial t} = \rho \sum_{\alpha} \left( \frac{\langle H^{\alpha} \rangle^{\alpha}}{\partial t} + \underline{g}^{\alpha} \frac{\partial \langle H^{\alpha} \rangle^{\alpha}}{\partial T} + \underline{g}^{\alpha} \frac{\partial \langle H^{\alpha} \rangle^{\alpha}}{\partial t} + \underline{g}^{\alpha} \frac{\partial \langle H^{\alpha} \rangle^{\alpha}}{\partial \langle W^{\alpha} \rangle^{\alpha}} \frac{\partial \langle W^{\alpha} \rangle^{\alpha}}{\partial t} \right) = -h_{c} S^{ext} (T - T_{ext})$$

#### Additional relations and Unknowns

 $S^{\alpha\beta}$ ,  $I^{\alpha\beta}$ ,  $S^{ext}$ Geometry & Composition profiles assumptions: Boundary conditions: h<sub>c</sub>, Text  $D^{\alpha}, \Delta T_n^{s_{\alpha}}$ Data:  $< H^{\alpha} > \alpha, \partial < H^{\alpha} > \alpha/\partial T, \partial < H^{\alpha} > \alpha/\partial < w^{\alpha} > \alpha$  ThermoCalc+Database Thermodynamic equilibrium: Wαβ ν<sub>n</sub>αβ Equilibrium: Interface: Boundary: Growth kinetics:  $V_{p}^{\alpha\beta}$ Solute balance: Solute balance & Continuity:  $g^{\alpha}$ ,  $\langle w^{\alpha \rangle \alpha}$ , Partial Derivative Equations:

## **Electromagnetic levitation**

# **Indirect micro**

## Containerless processing

- Controlled conditions, almost uniform temperature, observation of nucleation events
- Droplet: benchmark system for volume averaged models
  - Gandin et al. 2008, Acta mater. 56 3023, Heringer et al. 2006, Acta mater. 54 4427

![](_page_16_Figure_6.jpeg)

# **Electromagnetic levitation**

# **Indirect micro**

![](_page_17_Figure_2.jpeg)

<sup>M:</sup> Marasli&Hunt 1996 Acta Mater.

![](_page_17_Figure_4.jpeg)

## **Atomization**

# **Indirect micro**

- Regime I: Classical Fourier number analysis
   The peritectic transformation controls the phase fractions due to diffusion in the solid phases. It is favored for lower cooling rates (larger particles).
- Regime II: Al<sub>3</sub>Ni primary growth
   Primary growth of Al<sub>3</sub>Ni controls the phase fraction. It prevents the development of Al<sub>3</sub>Ni<sub>2</sub>.
- Regime III: Al<sub>3</sub>Ni<sub>2</sub> and Al<sub>3</sub>Ni growth competition Mixed regime where the peritectic reaction for Al<sub>3</sub>Ni can catch-up with the dendritic reaction of Al<sub>3</sub>Ni<sub>2</sub> and become primary when the cooling rate is increased.

# Evidence of growth competition between phases formed from the melt

Current extensions: multicomponent alloys (AM1), multiple phase transformations (FeCCr)

![](_page_18_Figure_7.jpeg)

# **Direct macroscopic methodology**

## Collaborations

- T. CAROZZANI, M. BELLET, H. DIGONNET, MINES ParisTech, Sophia Antipolis
- Y. FAUTRELLE, K. ZAIDAT, Institut National Polytechnique de Grenoble, Grenoble
- G. REINHART, N. MANGELINCK-NOËL, H. NGUYEN-THI, B. BILLIA, Aix-Marseille Université, Marseille
- J. BARUCHEL, ESRF, Grenoble

# Funding

- European Space Agency, Noordwijk, NL
- Agence Nationale de la Recherche, Paris

# Indirect macroscopic methodology

Two-phase model assuming  $\langle \rho \rangle^s = \langle \rho \rangle^l = \rho_0 = constant$  and  $\langle v \rangle^s = 0$ 

Total mass conservation Average flow velocity

#### **Momentum conservation**

Boussinesq approximation Carman-Kozeny permeability

#### **Energy conservation**

Average enthalpy

Solute mass conservation

Average composition

$$\begin{split} \nabla \cdot \langle \mathbf{v} \rangle &= 0 \\ \langle \mathbf{v} \rangle &= \langle \mathbf{v}^{l} \rangle = g^{l} \langle \mathbf{v} \rangle^{l} \\ \rho_{0} \frac{\partial \langle \mathbf{v}^{l} \rangle}{\partial t} + \frac{\rho_{0}}{g^{l}} \nabla \cdot (\langle \mathbf{v}^{l} \rangle \times \langle \mathbf{v}^{l} \rangle) - \nabla \cdot (\mu^{l} \nabla \langle \mathbf{v}^{l} \rangle) + g^{l} \nabla p^{l} - g^{l} \rho \mathbf{g} + \frac{\mu^{l}}{K} g^{l} \langle \mathbf{v}^{l} \rangle = 0 \\ \rho &= \rho_{0} \Big[ 1 - \beta_{th} (T - T_{0}) - \beta_{w} (w^{l} - w^{l}_{0}) \Big] \\ K &= \Big[ g^{l^{3}} \lambda_{2}^{2} \Big] / \Big[ 180 (1 - g^{l})^{2} \Big] \\ \rho_{0} \Big[ \frac{\partial \langle \mathbf{H} \rangle}{\partial t} + \langle \mathbf{v} \rangle \cdot \nabla \langle \mathbf{H} \rangle^{l} \Big] - \nabla \cdot (\langle \kappa \rangle \nabla T) = 0 \\ \langle \mathbf{H} \rangle &= g^{s} \langle \mathbf{H} \rangle^{s} + g^{l} \langle \mathbf{H} \rangle^{l} \\ \frac{\partial \langle w \rangle}{\partial t} + \langle \mathbf{v} \rangle \cdot \nabla \langle w \rangle^{l} - \nabla \cdot (D^{l} g^{l} \nabla \langle w \rangle^{l}) = 0 \\ \langle w \rangle &= g^{s} \langle w \rangle^{s} + g^{l} \langle w \rangle^{l} \end{split}$$

## The FE method provides a solution for $\langle v \rangle$ , $\langle H \rangle$ , $\langle w \rangle$ , T

G. Guillemot et al. 2007 Journal of Crystal Growth 303 58

- A CA grid of square cells is superimposed on top of the FE mesh
- Topological links are defined between the FE nodes and the CA cells
- Quantity at cell v,  $\xi_v$  (e.g.,  $\langle v \rangle$ ,  $\langle H \rangle$ ,  $\langle w \rangle$ , T), is computed from quantity at nodes n,  $\xi_n$ , thanks to interpolation coefficients c

$$\xi_{v} = \sum c_{v}^{n} \xi_{n}$$

and oppositely,

$$\xi_{n} = \left(\sum_{\nu} c_{\nu}^{n} \xi_{\nu}\right) / \left(\sum_{\nu} c_{\nu}^{n}\right)$$

![](_page_21_Figure_8.jpeg)

Carozzani et al. 2012 MSMSE 20 015010

# **Nucleation algorithm**

- State index of cell v wrt structure (j),  $I^{(j)}$ 
  - 0: no growing structure
  - 1: growing structure
  - 2: structure growth over

# • Structure nucleation in cell $\boldsymbol{\nu}$

- Test for  $I_{(j)}^{(j)} = 0$  prior to nucleation, change to  $I_{(j)}^{(j)} = 1$  after nucleation
- Test for ΔT<sub>v</sub> > ΔT<sup>nucl(j)</sup><sub>v</sub>, the activation undercooling of the nucleation site of structure (j) located in cell v (undercooling = temperature difference between the local liquidus temperature, T<sub>L</sub>, and the actual cell temperature, T<sub>v</sub>)
- Initialization of a set of Euler angles (φ<sub>1</sub>,Φ,φ<sub>2</sub>)<sup>(j)</sup>, defining the 6 perpendicular <100> directions
- Growth center  $C_{\nu_0}^{(j)}$  coincides with cell center  $C_{\nu_0}$
- Initialization of the lengths of the preferred <100> growth directions R<sup>(j)<100></sup>, (for a <100> dendritic structure (j))

![](_page_22_Figure_11.jpeg)

# **Growth algorithm**

# Structure growth in cell v

Increase of lengths R<sup>(j)<100></sup>, by time integration of a phenomenological dendrite tip growth kinetics model that depends on local temperature, T, composition, <w>, and liquid velocity, <v>l

![](_page_23_Picture_3.jpeg)

- Calculation of volume associated with the growth shape of cell v,
   V<sup>(j)</sup><sub>v capt</sub> = f(C<sup>(j)</sup><sub>v</sub>, R<sup>(j)<100></sup><sub>v</sub>), and the maximum volume required to capture all neighboring cells, V<sup>(j)</sup><sub>v max</sub>
- Calculation of the fraction of structure (j) in cell v,  $g^{(j)}_{v} = \min \left[ (V^{(j)}_{v} - V^{(j)}_{v \text{ capt}}) / (V^{(j)}_{v \text{ max}} - V^{(j)}_{v \text{ capt}}), 1 \right]$

# Structure propagation to a neighboring cell $\mu$

- Test for  $I_{\mu}^{(j)}=0$  prior to capture, test for liquid in cell  $\mu$ , change to  $I_{\mu}^{(j)}=1$  after capture
- Test for the center of cell  $\mu$  inside the growth shape associated with cell  $\nu$
- Propagation of the grain  $(\phi_1, \Phi, \phi_2)^{(j)}_{\mu} = (\phi_1, \Phi, \phi_2)^{(j)}_{\nu}$
- Calculation of  $C^{(j)}_{\ \mu}$ ,  $R^{(j)<100>}_{\ \mu}$ ,  $V^{(j)}_{\ \mu \ capt}$ ,  $V^{(j)}_{\ \mu \ max}$  and  $g^{(j)}_{\ \mu}$

## **Kinetics**

# **Direct macro**

## Nucleation kinetics

- Gaussian distribution of nucleation sites for a structure (j) as a function of the undercooling
  - Random selection of cells for assignment of nucleation sites
  - Random selection of Euler angles  $(\phi_1, \Phi, \phi_2)$  for each nucleation site

## Growth kinetics

- Phenomenological growth kinetics model for the shape associated to the cells
  - Ivantsov solution and marginal stability (dendrite tip kinetics)
  - Extention to account for the fluid flow intensity and direction with respect to the growth directions (assumed <100> for cubic materials)

## Mushy zone solidification

 Tabulation of thermodynamic properties for each phase in structure (j) assuming a given solidification path (phase volume fraction, phase composition and phase enthalpy as a function of temperature and the average composition)

# **ESRF directional set-up**

# **Direct macro**

## Experimental set-up at the European Synchrotron Radiation Facility (ESRF, beam line ID19)

Sample dimension: 37 mm x 6 mm x **200 µm** 

![](_page_25_Picture_4.jpeg)

Vacuum chamber

![](_page_25_Picture_6.jpeg)

Vacuum chamber

FReLoN camera

![](_page_25_Picture_9.jpeg)

Soft crucible : graphite foils + Mo frame and clips

![](_page_25_Picture_11.jpeg)

**Bridgman Furnace** 

Field of view :  $15 \times 6 \text{ mm}^2$ Pixel size : 7.46  $\mu$ m 1 frame / 3 seconds

*In situ* real-time X-Ray imaging of phases in AI - 3.5 wt% Ni

![](_page_25_Picture_15.jpeg)

H. Nguyen-Thi et al. 2007 Metall.Mater. Trans. A 38 1458

# In-situ imaging of solidification

# **Direct macro**

# Directional solidification of AI - 3.5 wt% Ni

![](_page_26_Figure_3.jpeg)

 $\begin{array}{cccc}
1 \text{ mm} & \text{AI} - 3.5 \text{ wt\% Ni,} \\
& G = 20 \text{ K/cm, V} = 1.5 \rightarrow 15 \text{ µm/s} \\
& V & X-\text{Ray radiography} \\
\end{array}$ 

- Dendritic grain
  - envelope delimited by the dendrite tips
  - mixture of dendritic Al-rich solid s plus interdendritic liquid d or interdendritic eutectic
  - growth in extradendritic liquid phase I, stopped by the extradendritic eutectic e
- Segregation of elements at s/l interface
  - average composition w<sup>s</sup>, w<sup>d</sup>, w<sup>l</sup>
  - average fraction of phases g<sup>s</sup>, g<sup>d</sup>, g<sup>l</sup>
- Dendritic-to-eutectic transition (DET) 1.5 μm/s
- Columnar-to-equiaxed transition (CET) upon velocity jump at 15 μm/s
- Distribution of inter- and intra-granular eutectic?
   Role of dendritic grain structure on eutectic distribution?

## **Measurements**

# **Direct macro**

- Measured parameters as inputs for simulations
  - Characterization of the nucleation event for each grain: position  $x_i$ ,  $y_i$  + orientation  $\theta_i$

![](_page_27_Figure_4.jpeg)

- Measurement of the average dendrite arm spacing: 130  $\mu\text{m}$
- Measurement of time evolution of the size of the mushy zone

Reinhart et al. 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012077

# **CAFE** simulation

# **Direct macro**

![](_page_28_Figure_2.jpeg)

- The interaction of the liquid flow with the structure is computed
- The segregation pattern is linked with the grain structure and the eutectic fractions
- The Columnar-to-Equiaxed Transition (CET) is reproduced
- Inter- and intra-granular eutectics are partly distinguished
- Dendritic-to-eutectic transition is qualitatively retrieved

## Limitations

# **Direct macro**

# To be improved...

- Direct tracking of the primary eutectic structure is missing to reach better comparison with in-situ observation.
- 3D effects can not be fully neglected.
- Assessment of nucleation undercooling and better measurements of the temperature fields would permit improved comparison.
- Measurements of the composition field and the liquid velocity fields are missing.
- Coupling with thermo-mechanics is required to give access to shrinkage and deformation.
- Sedimentation of the grains is not accounted for.

![](_page_29_Figure_9.jpeg)

# AlSi in cylindrical mold – Grains

# Parallel FE solver

- Coupled solutions for heat, solute and fluid flows
- 3D automatic remeshing

# Parallel CA solver

- Dynamic allocation of CA grid based on FE mesh
- Nucleation and growth of dendritic and eutectic

# Coupling between the CA and FE solvers

- Computation of mushy zone fraction from CA cells
- Conversion of average enthalpy at FE nodes
- Coupling with thermodynamic
  - Tabulated enthalpies as a function of temperature
  - Tabulated solidification path (ThermoCalc+PBIN)

#### Competition between columnar and equiaxed structures

Carozzani et al. 2012 MSMSE 20 015010

![](_page_30_Picture_15.jpeg)

CET in Al-Si (diameter 7 cm)

![](_page_30_Picture_17.jpeg)

# AlSi in cylindrical mold – Temp. Direct macro

 Retrieves well the occurrence of a recalescence recorded at 140 mm in the equiaxed region and the inflection recorded at 100 and 120 mm (validation of the coupling for heat flow together with the growth undercooling)

![](_page_31_Figure_2.jpeg)

# SnPb in rectangular cavity – Set-up Direct macro

- Developed at Institut National Polytechnique (Grenoble, FR) Hachani et al. 2012 Int. J. Heat and Mass Transfer 55 1986
- Inspired from Hebditch and Hunt 1974 Metall. Trans. 5 1557
  - Left-hand-side (LHS) and right-hand-side (RHS) heat exchangers with independent control of the time evolution of the temperature
  - 100x60x10 mm<sup>3</sup> geometry
  - Sn 3 wt% Pb alloy
  - $T_{LHS}$ - $T_{RHS}$  = 40 °C
  - Cooling rate = -0.03 °C/s
  - Thermocouples

10 columns, 5 rows

Positions from LHS (mm)
 L21 L24 L27 L30
 5 35 65 95

![](_page_32_Picture_11.jpeg)

# SnPb in rectangular cavity – Meas. Direct macro

- Accurate measurements with control temperature at LHS and RHS boundaries
- Possibility to extract time evolution of temperature maps

![](_page_33_Figure_3.jpeg)

# **SnPb** solidification paths – Tab.

# **Direct macro**

![](_page_34_Figure_2.jpeg)

## **SnPb properties – Tab.**

# **Direct macro**

![](_page_35_Figure_2.jpeg)

# SnPb in rectangular cavity – Flows Direct macro

• CA grid: 200 µm (7'500'000 cells)

FE mesh:

- Initial: 1'200 μm (76'000 nodes)
   Final: [780-1'200] μm
- Time step: 0.1 s
- Cluster: 64 processors
- CPU time: 4 days

Isothermal surfaces every 2°C Flow (max arrow 2.5 cm s<sup>-1</sup>) (Time acceleration x100)

T. Carozzani et al. 2012 Metallurgical and Materials Transactions in press. Nucleation sites

 RHS: n=5·10<sup>4</sup> m<sup>-2</sup>, ΔT<sub>a</sub>=1.5 °C, ΔT<sub>σ</sub>=0.5 °C
 Volume: n=10<sup>7</sup> m<sup>-3</sup>, ΔT<sub>a</sub>=5 °C, ΔT<sub>σ</sub>=0.5 °C

![](_page_36_Picture_10.jpeg)

# SnPb in rectangular cavity – Segreg. Direct macro

Radiography

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

3D FE simulation

![](_page_37_Picture_5.jpeg)

3D CAFE simulated segregation map

![](_page_37_Figure_7.jpeg)

# SnPb in rectangular cavity – Grains Direct macro

Casting surface

![](_page_38_Picture_2.jpeg)

![](_page_38_Picture_3.jpeg)

CAFE V\_I

n = 10<sup>8</sup> m<sup>-3</sup>

 $\Delta T_a = 3.5^{\circ}C$ 

 $\Delta T_{\sigma} = 0.5 \ ^{\circ}C$ 

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

# SnPb in rectangular cavity – Temp. Direct macro

![](_page_39_Figure_1.jpeg)

## **Direct macro**

![](_page_40_Figure_2.jpeg)

## **Direct macro**

![](_page_41_Figure_2.jpeg)

## **Direct macro**

![](_page_42_Figure_2.jpeg)

#### Improvement of nucleation kinetics required. Fragmentation?

# **Perspectives**

## Main scientific problems

- Nucleation laws not well characterized
- Fragmentation of mushy zone known as a source of crystals, but not understood
- Upscaling: modeling of a unique single grain with a direct microscopic method (e.g., phase field) for improving macroscopic models (e.g., CAFE)
- Coupling with deformation of the mushy zone during the formation of the solidification structure required (hot tear, shrinkage porosity, macrosegregation)
- Links with subsequent thermomechanical processing steps while inheriting from the solidification structure (e.g., PFZ formed upon homogenization heat treatment)
- Measurement of missing properties (e.g., interfacial energy and its anisotropy, mobilities)

## Direct simulation of structures

44

- Need for more dedicated experiments with well controlled boundary conditions, with
- in-situ and post-mortem characterizations, to be compared with
- more integrated modeling with multiple scale physics and thermodynamic properties.