Genèse des Microstructures I

Alexis Deschamps

SIMAP Grenoble INP University of Grenoble

GRENOBLE INSTITUTE OF TECHNOLOGY

Characterization methods Local : OM, SEM, EBSD, TEM, APT, ... Global : XRD, DSC, SAS, ...

Mechanisms

Diffusion

Dislocation motion

Interface motion

Solute effects

Stress effects

Microstructures

Macroscale : heterogeneity Microscale : phases, grains Sub-micro scale : phases, dislocation structures Nanoscale : precipitates, clusters

Modelling methods

Microstructure II

Disciplins

Solidification

Phase transformations

Plasticity

Recrystallisaton & grain growth

Outline

1. Introduction

2. Microstructure at the different scales: questions and answers (characterisation methods)

- 1. Micron scale : grains and phases
- 2. Sub-micron scale : fine grains, dislocation structures, coarse precipitates
- 3. Nanometre scale : precipitates

3. How to be precise and realistic

- 1. Coupling local and global techniques
- 2. The virtues of in-situ

4. "Real" materials: what kind of complexity

- 1. Multi-constituent alloys
- 2. Heterogeneous microstructures
- 5. One prospect for the future : towards in-operando characterization?

Use of large scale facilities for metallurgy

Special volume of Comptes Rendus de Physique

2012

Introduction

From: He et al. Acta Materialia 54 (2006) 1323-1334

Introduction

W. Rittel, Thesis, 2005 Delft University of Technology

Micro-scale

Evolution during a long series of processes

Solidification Homogenization Hot working (rolling, forging, extrusion, ...) Cold working (rolling, ...) Forming (stamping, stretching, ...) Secondary processes (welding, fastening, ...) Evolution in service (ageing, creep, ...)

To be characterized

Phase fractions Shape and size Interfaces (misorientation, orientation relationships) Chemistry (non homogeneous)

From : P. Moeck et al. Cryst. Res. Technol. 46, No. 6 (2011)

Phase characterization – structure – X-ray diffraction

Rietveld refinment \rightarrow Phase proportions

Phase characterization – structure – X-ray diffraction In situ measurements - Phase fractions vs. time & temperature $(101)_{\alpha}$ (110)_β $(200)_{\alpha}$ Intensity (a.u.) $(110)_{\alpha}$ $(211)_{\beta}$ $(201)_{\alpha}$ (110)_B (102)_α cooling $(100)_{\alpha}$ $(112)_{\alpha}$ (103)_α isothermal stage $(002)_{\alpha}$ solution heat treatment Phase heating 2θ (°) transformations in Ti alloys

G. Geandier et al. C. R. Physique 13 (2012) 257-267

Phase characterization – structure – X-ray diffraction

Precautions

- Detection limit: synchrotron < %, lab apparatus about 1 %
- Texture effects \rightarrow sample rotation, refinement
- Size effects (nanometer phases)
- Lab apparatus: penetration depth (Cu K α for steels...), surface state

1.5% retained austenite in a martensitic steel, Co laboratory source

From : L. Couturier, PhD work, University of Grenoble

Grain characterization – texture – EBSD

Grain characterization – texture – EBSD

"in-situ" recrystallisation in the SEM

Zirconium alloy

From N. Bozzolo et al., MATERIALS CHARACTERIZATION 70 (2012) 28–32

Phase characterization – texture – EBSD

Discriminate between different crystallographic phases + study of orientation relationship

Ti alloy orientation of $\alpha+\beta$ phase

Residual β phase and sketch of former β GBs

From He et al., Materials Science and Engineering A 549 (2012) 20–29

Phase characterization – texture – EBSD

Multiple phase detection : unicity of Kikuchi line analysis?

Coating of a Cr-containing steel with an Al-Si coating

From : W-J Cheng et al. MATERIALS CHARACTERIZATION 64 (2012) 15–20

Phase characterization – structural and chemical information

Carbide characterization in a high speed steel

From M. Godec et al. MATERIALS CHARACTERIZATION 61 (2010) 452–458

Phase characterization – chemical information

Electron Probe Microanalysis (EPMA)

Higher sensitivity vs. EDS More quantitative Better suited for light elements (C, N)

From : M.J. Santofimia et al. MATERIALS CHARACTERIZATION 61 (2010) 937–942

Sub-micro-scale

Grain and phase characterization – size and texture

Grains at the nano to sub-micro scale, Limits of the EBSD technique

Orientation mapping in the TEM: ASTAR technique

Nanocrystalline Aluminium

From : P. Moeck et al. Cryst. Res. Technol. 46, No. 6 (2011)

Microstructure at the sub-microscale : coarse precipitates

Precipitate characterization – size and spatial distribution

Phases at sub-micron scale : Coarse precipitates

- Inherited from solidification
- Precipitate during high temperature processes (e.g. austenitization)
- Quench-induced

FEG-SEM standard tool for observation

If large enough volume fraction XRD suitable for structure & fraction

Else use TEM

From: T. Marlaud et al. Corrosion Science 53 (2011) 3139–3149

Microstructure at the sub-microscale : coarse precipitates

Precipitate characterization – size and spatial distribution

Many properties linked to these particles depend on 3D spatial distribution

From K.E. Yazzie et al. MATERIALS CHARACTERIZATION 70 (2012) 33-41

Evolution during a series of processes

Hot deformation (rolling, extrusion, forging, ...) Cold deformation (rolling, shaping) Temperature changes (internal stresses – quench, welding) Constitutive laws for material performance Creep

To be characterized

Dislocation type : perfect, dissociated, super-dislocation Interaction with the microstructure Other dislocations : recovery, storage, cross-slip, ... Grain boundaries : pile-up, transmission Precipitates and other phases : GNDs, ... Arrangement Low energy dislocation structures Competition with recrystallization

From: L. Tan et al. / Materials Science and Engineering A 528 (2011) 2755–2761

Dislocation structures : Transmission Electron Microscopy

TWIP steels

- Dislocations
- Stacking faults
- Twins

From L. P. Karjalainen et al. Scripta Materialia 66 (2012) 1034– 1039

Dislocation structures : Transmission Electron Microscopy

Determination of the type of stacking fault (intrinsic / extrinsic) in a TWIP steel

а а 100 nm b $g = 00\overline{2}$ n g=002 R B

From H. Idrissi et al. / Scripta Materialia 60 (2009) 941–944

Dislocation structures : other observations

From I. Gutierrez-Urrutia et al. / Scripta Materialia 61 (2009) 737–740

Evaluation of dislocation density

Evaluation of dislocation density

Dislocation density measurement by density Suitable for highly deformed samples

From : B. Hutchinson, N. Ridley Scripta Materialia 55 (2006) 299–302

Dislocation density measurement by resistivity

Nano-scale

Evolution during a series of processes

Quench, natural ageing, multi-step ageing Secondary processes (e.g. welding) Evolution during use

To be understood

What forms: metastability, deviations from equilibrium Kinetics : from nucleation to coarsening Interaction with structural defects : GBs, dislocations, vacancies Interaction with plasticity Non-isothermal thermal paths

To be characterized

Structure Interface with the matrix Chemistry (deviation to stoichiometry) Size, shape Spatial distribution

Structure, interface with the matrix : TEM

High resolution (HREM, CS-corrected)

Atomic resolution HAADF-STEM (High Angle Annular Dark Field Scanning Transmission Electron Microscopy) (Z-contrast)

Diffraction

From : P. Donnadieu et al. Acta Materialia 59 (2011) 462–472

From : C. Dwyer et al. Appl. Phys. Lett. 98, 201909 (2011)

Structure, interface with the matrix : TEM

 $T_1 - Al_2CuLi$ precipitates in Al : presence of a stacking fault at the interface

From: J. Douin, CEMES, Toulouse, France

Chemistry : Atom Probe Tomography

Chemistry of precipitates Chemistry of residual matrix Statistical analysis of the matrix → clustering Segregation

Chemistry : Atom Probe Tomography

Local chemistry of different phases

Concentration Profile S phase

Segregation of Mg and Ag at the T_1 precipitate interface

20 nm

From: V. Araullo-Peters et al., Univ. of Sydney, Australia

Size, shape : Small-Angle Scattering (SAXS, SANS)

Size, shape : Small-Angle Scattering (SAXS, SANS)

From: F. De Geuser et al. J. Appl. Cryst. doi:10.1107/S0021889812039891

Spatial distribution : conventional TEM

Homogeneous vs. heterogeneous (quench-induced) precipitation in an Al-Zn-Mg alloy

From : A. Deschamps et al. Materials Science and Engineering A 501 (2009) 133–139

Volume fraction, thermodynamics : DSC

Differential calorimetry: easy quantification ΔH , f_v , solvus T, ... But interpretation can be tricky in complex systems (many phases)

Kinetic process

Through process modeling Thermomechanical effects Non isothermal treatments Complex chemistry Multiple information needed

Structure Size, fractions Chemistry Deformations / stresses Spatial distributions (2D, 3D)

In-situ techniques (towards in operando) \rightarrow non-local

Coupling between different techniques

- Local & non-local
- Average (statistics, in-situ), Local (spatial resolution, local information)

How to be precise and realistic

In-situ measurements + coupling with local technique

From B. Decreus et al. submitted to Acta Mater.

In-situ SAXS + Atom Probe Tomography

Nucleation mechanisms of T₁ precipitates in AlCuLi

From: V. Araullo-Peters et al., Univ. of Sydney, Australia

How to be precise and realistic

Thermo-mechanical in-situ: Precipitation under temperature & strain

Al-Zn-Mg-Cu alloys Small-Angle X-ray Scattering + TEM

Undeformed

Deformed @ 160°C

From: A. Deschamps et al. / Acta Materialia 60 (2012) 1905–1916

How to be precise and realistic

Multi-constituent alloys

Non stoichiometry Conditions at the interfaces

Need for good thermodynamic and kinetics databases Solving the compromise between driving force and kinetics Interfaces : snowplow effect, segregation, precipitation, ...

From M. Godec et al. MATERIALS CHARACTERIZATION 61 (2010) 452–458

Multi-constituent alloys

Ni G phase Mn

Ageing of precipitation hardened stainless steel

- Spinodal decomposition
- Cu and G-phase precipitation

Heterogeneous microstructures

Heterogeneity due to solidification

Heterogeneity due to deformation (e.g. forming)

Secondary processes (welding)

From: D. Dumont et al. Mat. Sci. Eng. A 2003 ; 356 : 326-336.

Heterogeneous microstructures

Electron beam welding of Al-Zn-Mg + post welding heat treatment

Heterogeneous distribution of solute and precipitates

From : Q. Puydt, PhD work, INPG

Heterogeneous microstructures

From: B. Malard et al., Coralis project, SIMAP

Friction Stir Welding of Al-Cu-Li : SAXS mapping

Spatial distribution of precipitate microstructures

How to be realistic and precise on real materials?

Towards in-operando: a gleeble in a high energy synchrotron beamline

Deformation

Non-isothermal path

Fast kinetics

XRD measurements Solidification

Phase transformations

Precipitation

Recrystallization

Hermès project (Alain Jacques, IJL) : High Energy Radiation for Metallurgical Studies