

ANF métallurgie Aussois 22-25 octobre 2012

Additive Manufacturing

S. Kenzari, D. Bonina, J-M. Dubois, V. Fournée

IJL - Institut Jean Lamour - UMR 7198 Matériaux-Métallurgie-Nanosciences-Plasmas-Surfaces

Parc de Saurupt, 54011 Nancy, France

samuel.kenzari@ijl.nancy-universite.fr

- Additive Manufacturing:
 Selective laser Sintering process (SLS)
- Materials for SLS Indirect fabrication or direct fabrication
- > CMAs as alternative materials
- > Perspectives

ANF métallurgie Aussois 22-25 octobre 2012

Automatic freeform fabrication of physical objects (metals, plastics or composite materials) using additive manufacturing technology

ANF métallurgie Aussois 22-25 octobre 2012

> Automatic freeform fabrication of physical objects (metals, plastics) or composite materials) using additive manufacturing technology

> Examples of freeform parts

Ti-based implant

knee implant (CoCr alloy)

Polyamide

Polyamide based composite

Steel/bronze composite

ANF métallurgie Aussois 22-25 octobre 2012

> Automatic freeform fabrication of physical objects (metals, plastics or composite materials) using additive manufacturing technology

> Additive manufacturing worldwide by activities:

ANF métallurgie Aussois 22-25 octobre 2012

> Automatic freeform fabrication of physical objects (metals, plastics or composite materials) using additive manufacturing technology

> Additive manufacturing worldwide by activities:

> Additive manufacturing worldwide by utilizations:

Selective Laser Sintering (SLS)

ANF métallurgie Aussois 22-25 octobre 2012

Powder based method

Fabrication of freeform shaped parts

3D CAD model (STL file format)

Selective laser sintered part (SLS part)

> Additive layer manufacturing process

SLS: How does it work ? Layer by layer manufacturing

ANF métallurgie Aussois 22-25 octobre 2012

 Powders are heated a few °C below its first melting point
 Laser brings just enough energy to melt the nylon
 Build chamber is lowered and a new layer of powders is leveled

4- Similar steps are repeated

ANF métallurgie Aussois 22-25 octobre 2012

Indirect fabrication Metal parts

Direct fabrication

Polymer matrix composites

Several steps are necessary

Parts can be used directly

ANF métallurgie Aussois 22-25 octobre 2012

Indirect fabrication Metal parts **Direct fabrication** Polymer matrix composites

Several steps are necessary

- Steel / bronze composite

Parts can be used directly

ANF métallurgie Aussois 22-25 octobre 2012

Indirect fabrication Metal parts

Several steps are necessary

- Steel / bronze composite
 - 1- <u>SLS</u> of steel + 10 vol.% nylon powders (preform)
 - Nylon acts as binder
 - Preform has ≈ 40 vol.% of porosities
 - Preform is handleable
 - 2- Infiltration of bronze in the porous steel preform
 - Tm bronze < Tm steel

Typical SEM images of SLS preform

ANF métallurgie Aussois 22-25 octobre 2012

Towards light-weight materials: Al-based materials

Light-weight materials: Al-based materials

ANF métallurgie Aussois 22-25 octobre 2012

Al₁ / Al₂ composite

- 1- <u>SLS of Al1</u> + 10 vol.% nylon powders
- 2- Nitridation of Al1 preform
- 3- Infiltration of Al2 in the porous AI-AIN preform
 Tm Al2 infiltrant < Tm Al1 preform

≈ 2.7 g/cm³

T.B. Sercombe and G.B. Schaffer, Science 301 (2003)

Steel / bronze composite

- 1- <u>SLS of steel</u> + 10 vol.% nylon powders (preform)
 - Nylon acts as binder
 - Preform has ≈ 40 vol.% of porosities
 - Preform is handleable
- 2- Infiltration of bronze in the porous steel preform
 - Tm bronze < Tm steel

Light-weight materials: Al-based materials

ANF métallurgie Aussois 22-25 octobre 2012

Al₁ / Al₂ composite

- 1- <u>SLS of Al1</u> + 10 vol.% nylon powders
- 2- Nitridation of Al1 preform
- Infiltration of Al2 in the porous AI-AIN preform
 Tm Al2 infiltrant < Tm Al1 preform

T.B. Sercombe and G.B. Schaffer *Acta Mater.* **52** (10), (2004)

Nitridation is essential to achieve a successful infiltration of Al₁ by Al₂

Light-weight materials: Al-based materials

ANF métallurgie Aussois 22-25 octobre 2012

Al₁ / Al₂ composite

- 1- <u>SLS of Al1</u> + 10 vol.% nylon powders
- 2- Nitridation of Al1 preform
- 3- Infiltration of Al2 in the porous AI-AIN preform
 Tm Al2 infiltrant < Tm Al1 preform

T.B. Sercombe and G.B. Schaffer, Science 301 (2003)

T.B. Sercombe and G.B. Schaffer *Acta Mater.* **52** (10), (2004)

Nitridation embrittles Al₁/Al₂ interface

Fracture strain < 1%

ANF métallurgie Aussois 22-25 octobre 2012

Al₁ / Al₂ composite

Al-based CMA / Al composite

- 1- <u>SLS of Al1</u> + 10 vol.% nylon powders
- 2- Nitridation of Al1 preform
- **3-** Infiltration of Al2 in the porous Al-AIN preform
 Tm Al2 infiltrant < Tm Al1 preform

Preform materials	Е	Hardness	Density	Thermal stability
	(Gpa)	(Hv)	(g.cm ⁻³)	(\Im)
Al alloys	≈ 70	50 - 320	2.7	550 - 660
CMA - AICuFe(X)	160 - 200	600 - 900	4 - 5	800 - 900
Steel	≈ 200	300 - 1000	7.8	> 1300

ANF métallurgie Aussois 22-25 octobre 2012

17 M 1732 01-0124 01-0124 01-0124	1710 1710 1710 1710 1710 1710 1710 1710	340 26% 17% 17% 340 340 17% 17% 17% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1
	1737 1738 1738 1740 1741 1741 1742	t matter two sap another area 134 174

Phys. Rev. Lett. 53, 1951, 1984							
	Preform materials	E	Hardness	Density	Thermal stability		
		(Gpa)	(H∨)	(g.cm ⁻³)	(\mathfrak{D})		
	Al alloys	≈ 70	50 - 320	2.7	550 - 660		
	CMA - AlCuFe(X)	160 - 200	600 - 900	4 - 5	800 - 900		
	Steel	≈ 200	300 - 1000	7.8	> 1300		

S. Kenzari

ANF métallurgie Aussois 22-25 octobre 2012

ANF métallurgie Aussois 22-25 octobre 2012

ANF métallurgie Aussois 22-25 octobre 2012

Preform materials	E	Hardness	Density	Thermal stability
	(Gpa)	(Hv)	(g.cm ⁻³)	(\mathfrak{D})
Al alloys	≈ 70	50 - 320	2.7	550 - 660
CMA - AlCuFe(X)	160 – 200	600 – 900	4 – 5	800 - 900
Steel	≈ 200	300 - 1000	7.8	> 1300

ANF métallurgie Aussois 22-25 octobre 2012

L. Bindi et al., Science 324, 1306, 2009

Preform materials	E	Hardness	Density	Thermal stability
	(Gpa)	(Hv)	(g.cm ⁻³)	(\Im)
Al alloys	≈ 70	50 - 320	2.7	550 - 660
CMA - AICuFe(X)	160 – 200	600 – 900	4 – 5	800 - 900
Steel	≈ 200	300 - 1000	7.8	> 1300

ANF métallurgie Aussois 22-25 octobre 2012

Phys. Rev. Lett. 53, 1951, 1984

L. Bindi et al., Science 324, 1306, 2009

Preform materials	E	Hardness	Density	Thermal stability
	(Gpa)	(Hv)	(g.cm ⁻³)	(\Im)
Al alloys	≈ 70	50 - 320	2.7	550 - 660
CMA - AICuFe(X)	160 – 200	600 – 900	4 – 5	800 - 900
Steel	≈ 200	300 - 1000	7.8	> 1300

ANF métallurgie Aussois 22-25 octobre 2012

Al-based CMA / Al composite

1- SLS of AI-based CMA + 10 vol.% nylon powders

2- Nitridation of CMA preform

- 3- Infiltration of AI in the porous CMA preform
 - Tm AI infiltrant < Tm CMA preform

Nitridation is avoided by using vacuum or Argon

ANF métallurgie Aussois 22-25 octobre 2012

Al-based CMA / Al composite

1- SLS of Al-based CMA + 10 vol.% nylon powders

2- Nitridation of CMA preform

3- Infiltration of AI in the porous CMA preform

• Tm AI infiltrant < Tm CMA preform

ANF métallurgie Aussois 22-25 octobre 2012

Quasicrystalline Preform

Al-based CMA / Al composite

1- SLS of Al-based CMA + 10 vol.% nylon powders

2- Infiltration of AI in the porous CMA preform
Tm AI 1050 < Tm *i*-AlCuFeB

EDS map of Mg in the infiltrated part

ANF métallurgie Aussois 22-25 octobre 2012

Quasicrystalline Preform

Al-based CMA / Al composite

1- SLS of Al-based CMA + 10 vol.% nylon powders

2- Infiltration of AI in the porous CMA preform • Tm AI 1050 < Tm *i*-AlCuFeB

Preform is fully infiltrated by aluminium 36

ANF métallurgie Aussois 22-25 octobre 2012

Quasicrystalline Preform

i-AlCuFeB infiltrated by aluminium alloy (98%)

10 mm

Al-based CMA / Al composite

- 1- SLS of Al-based CMA + 10 vol.% nylon powders
- 2- Infiltration of AI in the porous CMA preform • Tm AI 1050 < Tm *i*-AlCuFeB

Preform is fully infiltrated by aluminium 37

ANF métallurgie Aussois 22-25 octobre 2012

λCoKα₁ = 1.788965 Å

ANF métallurgie Aussois 22-25 octobre 2012

39

Conclusions - Perspectives

ANF métallurgie Aussois 22-25 octobre 2012

Preforms can be produced by SLS from quasicrystalline + nylon powders and infiltrated by commercial aluminium alloys (AI 98%, AISi)

This work shows a new application of CMAs and extends the SLS process towards a new class of light-weight materials

> What is the maximum part size?

> What are mechanical properties?

ANF métallurgie Aussois 22-25 octobre 2012

Direct fabrication

Parts can be used directly

- Polyamide (nylon)
- Polyamide based composites Nylon+glass fiber, Carbon fiber, Al...

Polyamide+Al

ANF métallurgie Aussois 22-25 octobre 2012

Direct fabrication

Polymer matrix composites

Friction and Wear

ANF métallurgie Aussois 22-25 octobre 2012

Friction and Wear

ANF métallurgie Aussois 22-25 octobre 2012

Reduction of the volume loss by about 70%

Friction and Wear

ANF métallurgie Aussois 22-25 octobre 2012

Glass

Qc

glass fibers

Leak-tight part

ANF métallurgie Aussois 22-25 octobre 2012

(PA+CMA) intake manifold

Leak tests : High air pressure and water pressure (up to 7 bars)

No post-impregnation of resin

Composite polymer powders with CMA particles

Conclusions

ANF métallurgie Aussois 22-25 octobre 2012

- Quasicrystal-polymer composite was adapted and commercialized for applications in Selective laser sintering process

Functional part

-This new light-weight composite extends the materials choice compatible with the SLS process and offers improved functional properties

ANF métallurgie Aussois 22-25 octobre 2012

Additive Manufacturing

S. Kenzari, D. Bonina, J-M. Dubois, V. Fournée

IJL - Institut Jean Lamour - UMR 7198 Matériaux-Métallurgie-Nanosciences-Plasmas-Surfaces

Parc de Saurupt, 54011 Nancy, France

samuel.kenzari@ijl.nancy-universite.fr

