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Total energy of solids I Total energy of solids I 

System =    collection of atoms    ⇒ crystals                                                            

Conditions (of diffusion) = constant pressure + constant temperature

structural periodicity            

bcc, fcc, hcp, diamond cubic 

Temperature    

effect
Atom  

G = H − TS
Total energy (eV)         

(Gibbs free energy)

Total energy at 0K (eV) 

(enthalpy) = internal energy

� atomic pair interactions   

� semi-empirical potentials 

� …

effect

Temperature 

(K)
Entropy                                   

S ∝ disorder (configuration)

S = kB lnΩ (eV/K)

Atom  

interactions

Config. with higher disorder      

⇒ higher S

⇒ lower G

probability of existence
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i = 3

Total energy of solids IITotal energy of solids II

Nbr of atoms 

Total energy (eV)          

(Gibbs free energy)

G = ∑ ni µi
i

(n, T, P = const)

at equilibrium

i = 2

Chemical potential of 

atoms of type i (eV)

Nbr of atoms 

of type i

Energy per atom of type i in the system having a total energy G

at equilibrium  (otherwise µi
j atom of type i on site j ≠ const)
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dG = µidni = work to add an atom of type i in the system at equilibrium



Total energy of solids IITotal energy of solids II

µi = kBT ln(ai) = kBT ln(γiCi) with ai activity, γi ≤ 1 activity coefficient and 0 ≤ Ci ≤ 1 

concentration of element i in the system 

Activity ai = concentration of active atoms of type i in the system

� When an atom is put with other atoms, its chemical activity (“power of reaction”) 

decreases due to its interactions with the other atoms

Ideal case

The atom do not experience any interactions (neither attractive nor repulsive)                        The atom do not experience any interactions (neither attractive nor repulsive)                        

Its activity does not decrease when its concentration increases                                                              

⇒ ai = Ci and γi = ai/Ci = 1 (Raoult’s law)

Pure elements

⇒ ai = 1

Strong dilution (not ideal)

A given solute atom has no interactions with other solute atoms                                     

The variation of its activity is linear with its concentration (Ci << 1)                                     

⇒ ai = γiCi and γi = constant (Henry’s law)



Mixing energyMixing energy
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Mixing with 

ordering

Different configuration = different energy G 

Mixing energy = ∆G = Galloy − (GpureA + GpureB)

config. 2 configuration 1



Stability and equilibriumStability and equilibrium

(n, T, P = const ⇒ evolution of the system versus time)

∑ <=−=
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iidnTdSdHdG 0µ
The next configuration is more stable if

∑ ==−=
i

iidnTdSdHdG 0µ
The configuration is stable if the equilibrium configuration has been reached: 

The condition dµi = 0 can be also applied versus dr (distance) meaning that all the 

atoms of same type i exhibit the same µi everywhere in the system at equilibrium



Mixing energyMixing energy
Random mixing 

(disorder)
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Internal energy = Ising model
� rigid lattice      

� pair interactions 

� first neighbors
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N = nA+ nB , Z nbr 1st neighbors , εij < 0 atomic pair energy between i and j

Random distribution stable only if V = 0 (no difference of interactions εAA + εBB = εAB)        

⇒ ideal case ∆H = 0

Uniform distribution (random) = most probable state = Largest Ω ⇒ highest S = kB lnΩ
)( pureBpureAalloy SSSS +−=∆ ( )BBAAB CCCCNkS lnln +−=∆

( )BBAAB CCCCTNkG lnln +=∆
Energy minimization (∆G < 0) controlled by maximum entropy



Mixing energyMixing energy

∑ ∆=∆
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Energy minimization (∆G < 0) controlled by minimum chemical 

potential

Random mixing 

(disorder)

( )BBAAB CCCCTNkG lnln +=∆

µi = kBT ln(ai), and random mixing = no interactions between atoms (V = 0)

⇒ ideal case ai = Ci
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AABBAA nnnnG µµµµµµ −+−=∆+∆=∆

BBBABA CTknCTknG lnln +=∆

Stable random solution = ideal solution ⇒ V = 0, ∆H = 0, dG = 0 if S = Max or µi = Min



Mixing energyMixing energy

Mixing with 

orderingPhase separation

Diffusion = under solubility ∼ dilution

Solute µB = kBT ln(γBCB) with γB = const.                                          

Matrix µA = kBT ln(CA), γA = 1

V < 0, ∆H > 0 V > 0, ∆H < 0

No interactions between diluted atoms ≈ random distribution (ideal solution)

⇒ V ≠ 0 but ∆H’ = 0                                                                                                           

⇒ dG = 0 if S = Max or µi = kBT ln(γiCi) = Min with γi = const                                       

⇒ dµi = 0 ⇒ d(lnCi) = 0 ≈ ideal case with µi = kBT ln(Ci) 

∆G’
µi = kBT ln(γiCi) with γi = f(Ci)



Kinetic modelKinetic model

Effective change of configuration: configuration 1 → configuration 2

Depends on the driving force (∆G1 < 0) and of the kinetics (∆G2)

∆G1 = total energy difference between configurations 1 and 2 

∆G2 = kinetic barrier ∝ energy needed to change configuration

Config. 1 Config. 2



Minimum energy = driving forceMinimum energy = driving force

Diffusion definition = “long distance” atomic transport ⇒ atomic flux

� Diffusion because the early configuration is not the equilibrium configuration (at T, P, n)

� Different driving force “names” (maximum S, minimum µ ) but same goal that is a 

minimum G ⇒ same kinetics for different changes of configurations (if point defect 

concentrations at equilibrium) as surface segregation, phase formation…

The driving force is very importantThe driving force is very important

� No driving force = no diffusion (whatever the kinetics)

� Need to know the driving force in order to correctly extract the 

“coefficient of diffusion” from the measurement of flux

E2 < E1 ⇒ config. 2 more stable than config. 1 

∆G1 = driving force to go to config. 2 



Minimum energy = driving forceMinimum energy = driving force
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Atomistic mechanism = kineticsAtomistic mechanism = kinetics

� ∆G2 depends on the “path” used to go from config. 1 to config. 2                                      

� Several “paths” or “mechanisms” with different ∆G2 can allow to change configuration 

� The mechanism the most probable (the fastest) is the one exhibiting the lowest ∆G2

During diffusion                                                                              

Main energy source = Temperature ⇒ E ≈ 3/2 kBT per atom

20°C ⇒ kBT ∼ 0.025 eV                                                                  

500°C ⇒ kBT ∼ 0.067 eV                                                                  

1000°C ⇒ kBT ∼ 0.11 eV 

Probability of configuration change ∝ Exp[ −(∆G1 + ∆G2) /kBT ] 
(Boltzmann distribution, kB = Boltzmann constant)



Diffusion flux and diffusion equationDiffusion flux and diffusion equation

J (at s−1): particle flux = number of particles that are going through a surface unit

(section) per time unit

J proportional to the number of particles and to their

velocity

C: particle concentration in the matrix, F: flux driving force

i ⇒ same type of particles can use in a same matrix several different paths or 

M: mobility of uncharged particles in a given matrix ,             

1/M: friction coefficient, M×F = particles’ velocity (m s−1)

D (m2 s−1): diffusion coefficient

i ⇒ same type of particles can use in a same matrix several different paths or 

mechanisms exhibiting different mobility, and can experience different driving 

forces



Diffusion flux and diffusion equationDiffusion flux and diffusion equation

Mass conservation (equation of continuity) ⇒

Diffusion equation

Allows the prediction (from initial conditions) of particle concentration variations 

∇ = exd/dx + eyd/dy + ezd/dz

Allows the prediction (from initial conditions) of particle concentration variations 

versus time everywhere in the matrix

Single type of atoms in a single spatial direction (x)



Diffusion flux and diffusion equationDiffusion flux and diffusion equation

Driving force = minimum chemical potential ⇒

“−” ⇒ atoms diffuse in the direction of decreasing chemical potential

Nernst-Einstein equation

Assuming D = constant (point defect concentration at equilibrium) Assuming D = constant (point defect concentration at equilibrium) 

and considering that µ = kBT ln(γC)

Ideal solution (or non-ideal diluted solution) ⇒ γ = 1, µ = kBT ln(C)

Fick’s equation = random motion                                 

diffusion depends only on concentration



Diffusion flux and diffusion equationDiffusion flux and diffusion equation
∆x: averaged distance of atoms during random motion                                 

∆t: diffusion time 

Einstein’s equation (one dimension)

Fick’s equation cannot be used for all case (ideal or diluted solutions),

however it is easier to use than the Nernst-Einstein equation, since

the atom concentration is easy to measure in the samples, while the

knowledge of atom chemical potential is not straight forward

For non-ideal solution, instead of to use the Nernst-Einstein equation, we can use the Fick

equation with the addition of driving forces (included in the chemical potential) exhibiting

a field easily measured or predictable in samples
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Diffusion flux and diffusion equationDiffusion flux and diffusion equation

p: pressure                                             

Ω: atomic volume                                 

FH = U − TS: Helmholtz’s free enthalpy 

Example: chemical potential expressed versus pressure or stress

Driving force = stress gradient (“−” for compression, “+” for tension), 

strain can be measured experimentally to deduce the stress field and 

thus to model diffusion
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Diffusion flux and diffusion equationDiffusion flux and diffusion equation

Example: dopant-induced electric field for dopant diffusion in 

semiconductors

Dopants are ionized when substitutionally dissolved in semiconductors ⇒ modify the

Fermi level EF of semiconductors ⇒ internal electric field that varies with dopant

concentration (and thus with diffusion time)

For n-type dopants (single positive charge), the electric field and driving force F is 

Ei
F: intrinsic Fermi level                                             

q: charge of the dopant                                 

n: free electron concentration                                 

ni: intrinsic free electron concentration 

For n-type dopants (single positive charge), the electric field and driving force F is 

Dopant mobility in the electric field ⇒



Diffusion flux and diffusion equationDiffusion flux and diffusion equation

Example: dopant-induced electric field for dopant diffusion in 

semiconductors

Flux for n-type dopants (single positive charge):

Diffusion equation for n-type dopants (single positive charge):



Solution of the diffusion equationSolution of the diffusion equation

In some cases (given geometry and given limit conditions) the diffusion equation can be 

solved analytically

� Diffusion can be predicted using the analytical solution of the diffusion equation (exact 

solution)                                                                                                                    

� Often solutions considers the Fick equation in a given geometry (microstructure)

For more complex diffusion cases (not at equilibrium, complex geometry, diffusion 

coefficient varying with time…) without analytical solution, diffusion is predicted using 

numerical simulations (approached solution)

For more analytical solutions, see: Y. Adda and J. Philibert, La Diffusion dans les Solides 

(bibliothèque des Sciences et Techniques Nucléaires, Saclay, Presses Universitaires de 

France, Paris, 1966),Tome 1



Solution of the diffusion equationSolution of the diffusion equation

Solution of Fick’s second law

C � 0   as   t � 0  for  x > 0                                

C � ∞ as   t � 0  for  x = 0

Limit conditions

∫
+∞

∞−

= QdxtxC ),( = Total amount 

at/cm2

Gaussian solution in an infinite medium

� Peak concentration decreases as 1/√t and is given by C(0,t)

� When the distance from origin (x = 0) is x = 2√Dt the concentration has fallen by 1/e

� A Gaussian solution remains Gaussian when more diffusion time is added (profiles of 

atoms implanted in the sample)
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Solution of the diffusion equationSolution of the diffusion equation

Solution of Fick’s second law

C � 0   as   t � 0  for  x > 0                                

C � ∞ as   t � 0  for  x = 0

Limit conditions

∫
+∞

∞−

= QdxtxC ),( = Total amount 

at/cm2

Gaussian solution near the surface

� Peak concentration decreases as 1/√t and is given by C(0,t)

� When the distance from origin (x = 0) is x = 2√Dt the concentration has fallen by 1/e

� A Gaussian solution remains Gaussian when more diffusion time is added (profiles of 

atoms deposited on the surface of the sample)

Solution of Fick’s second law
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Solution of the diffusion equationSolution of the diffusion equation

Solution of Fick’s 2nd law

Infinite source of atoms near the surface











= x

erfcCtxC ),(

Limit conditions

C = 0   at   t = 0  for  x > 0 

C = CS at     t = 0         for  x = 0         
and t = ∞

� Quantity of atoms in the sample bulk increases with time

� Diffusion from vapor: Cs = constant amount of adsorbed atoms at a given temperature

� Diffusion from a film (dissolution): Cs = solubility limit of atoms at a given temperature

Solution of Fick’s 2nd law 
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Solution of the diffusion equationSolution of the diffusion equation

Dtx ∝∆
Important law to remember
Einstein’s equation (one dimension)

Average diffusion length Coefficient of diffusion Diffusion time

2 ∆x ≡ 4 ∆t



“The” coefficient of diffusion“The” coefficient of diffusion
Introduction of a defect in the solid 
� Increase of the system internal energy (formation energy of the defect ∆Gf)

� Increase of the system entropy (configuration: for the same energy G, defects can 

occupy different locations in the crystal)

E
G = E − TS [ ])1ln()1(ln CCCCTNkGNCG Bf −−++∆=

Random distribution of point defects in a pure crystal

In equilibrium conditions, solids 

always possess point defects

−−−−TS

Defect concentration

G: total energy of the crystal (single type of atoms) 

n: total number of defects in the crystal                  

N: total number of sites in the crystal                         

C = n/N: defect concentration                                                 

(1 − C): atom concentration
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Equilibrium 

concentration (T, p)



“The” coefficient of diffusion“The” coefficient of diffusion

(1) Vacancy ⇒ V

(2) Self-interstitial ⇒ I

(3) Interstitial impurity ⇒ Ai

Examples of point defects

i

(4), (5) substitutional impurity ⇒ As

Arrows show the local stress introduced by 
the point defects



“The” coefficient of diffusion“The” coefficient of diffusion

Metals
� EF in the middle of the conduction band, only one type of charged carriers = electrons 

(holes are not considered)

� A lot of electronic states close to the Fermi level (EF) ⇒ small variations of the electron 

concentration due to the occurrence of a defect do not change significantly the position of 

the Fermi level

� AB initio calculations show that usually:                                                                                    

� the electron density varies in the vicinity of a defect                                                                      

� the density of states changes in the vicinity of a defect                                                                    � the density of states changes in the vicinity of a defect                                                                    

� the filling of the electronic states close to the defect keeps the neutrality of charges             

⇒ Generally, defects are not charged in metals (elastic interactions)

Semiconductors / dielectrics
� EF in the middle of the gap, considers two types of charged carriers: the electrons 

(negative) in the conduction band and the holes (positive) in the valence band

� Quasi-no states close to EF ⇒ small variations of the electron concentration due to the 

occurrence of a defect can change significantly the position of the Fermi level                         

⇒ Generally, defects are charged in semiconductors (elastic and coulombic interactions)



“The” coefficient of diffusion“The” coefficient of diffusion

� In crystals, atoms move using point defects: vacancy-mediated or interstitial-

mediated mechanisms
� The signature of the atomic mechanism used by atoms to move in crystals is contained 

in the diffusion coefficient 

General expression of the equilibrium concentration of an uncharged point defect X0

∆Gx
f: the defect formation energy

θX: number of internal freedom degrees of the defect                                                                       

CXS: density of possible sites for the defect in the lattice (substitutionals, interstitials…)

Example: in metals the defects are not charged, and the density of self-interstitials is

negligible. The principal diffusion mechanism is the direct vacancy mechanism (vacancies

diffuse in the opposite direction to atom diffusion).



“The” coefficient of diffusion“The” coefficient of diffusion

General expression of the equilibrium concentration of a point defect X having a charge j

n: local concentration of electrons                                                                                           

ni: intrinsic concentration of electrons

zj: number of electrons associated to each charged state of the defect                                δX: 

intrinsic relative concentration of defect Xj compared to the same uncharged defect X0 (δX0intrinsic relative concentration of defect X compared to the same uncharged defect X (δX0

= 1, δXj = f(T))

The expression on the right is obtained assuming that in intrinsic condition EF is located 

close to the middle of the gap between the valence and the conduction bands of the solid

� The concentration of uncharged defects is independent of EF

⇒ EF variations lead to the change of the total point defect concentration (≠ proportion)

Example: in semiconductors, uncharged and charged defects are coexisting, and the

density of self-interstitials can be as important as the concentration of vacancies



“The” coefficient of diffusion“The” coefficient of diffusion
Example: equilibrium concentration of a defect X exhibiting a single negative charge (X-1) or

a double negative charge (X-2) in semiconductors

EX-1 and EX-2: the energy of the defects X-1

and X-2 in the gap of the semiconductor

Example: equilibrium concentration of a defect X exhibiting a single positive charge X+1 or a

double positive charge X+2 in semiconductors
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“The” coefficient of diffusion“The” coefficient of diffusion

� Point defects can interact together, as well as with charge carriers

⇒ Reactions (particularly important for out-of-equilibrium conditions for which point

defect concentrations vary during material ageing)

Xj: defect X with the charge j

pt
i: an electron (i = −1) or a hole (i = +1)

Defect/charged carrier interactions ⇒ change of charge state

pt : an electron (i = −1) or a hole (i = +1)

However, in general, reactions between point defects and charged carriers are 

neglected, since their kinetics are very fast compared to atom or ion reactions 

(instantaneous equilibrium of charged carrier distributions) 

Reactions between point defects cannot be neglected

⇒ Example: formation and annihilation of point defects allowing to reach point 

defect equilibrium concentrations



“The” coefficient of diffusion“The” coefficient of diffusion

Frenkel’s process: an atom of the lattice leave its substitutional site to occupy 

an interstitial site, creating simultaneously a self-interstitial (I) and a vacancy (V)

In a perfect crystal without extended defects (dislocations, grain boundaries…) 

equilibrium defect concentrations can be obtained following two mechanisms:

� bulk mechanism (Frenkel)                                                                                                     

� surface mechanism (Schottky)

an interstitial site, creating simultaneously a self-interstitial (I) and a vacancy (V)

〉〈⇔+ 0VI

� Despite that this reaction takes place in the bulk, the vacancy and self-

interstitial concentrations are not always the same, as defects can diffuse to the

surface of the crystal and can be annihilated in order to decrease the system

energy

� Frenkel’s process corresponds to an important activation barrier



“The” coefficient of diffusion“The” coefficient of diffusion

Schottky process: vacancies and self-interstitials can be produced independently

at the surface of the crystal ⇒ a substitutional atom on the surface can create a 

self-interstitial by jumping in an interstitial site, or a vacancy by jumping on 

another surface site

� Lower activation energy than the Frenkel process

� at a given temperature, point defects can diffuse from the surface toward the 

bulk of the crystal in order to reach the bulk equilibrium concentration of defects

� due to the bulk recombination process (Frenkel process), a flux of point defects 

exists between the surface and the bulk of the crystal (⇒ stationary conditions)

νX: velocity of the point defect X

CX
eq: equilibrium concentration of X at the considered temperature

� Lower activation energy than the Frenkel process



“The” coefficient of diffusion“The” coefficient of diffusion

Proportion of vacancies measured by positron annihilation: (a) vacancy concentration in a  

GaN film versus thickness [J. Oila et al., Applied Physics Letters 82 (2003) p. 3433], (b) 

vacancy proportion versus depth in a Si substrate with or without native oxide [P. Asoka-

Kumar et al., Physical Review B 48 (1993) p. 5345]



“The” coefficient of diffusion“The” coefficient of diffusion

Direct vacancy 

mechanism

random motion

Γ: jump frequency                                                                

ν : Jump probability

f : correlation factor                   

η : probability to find the defect on site #1                       

Vacancy            Atom   

η : probability to find the defect on site #1                       

ν0: exchange frequency (Debye frequency)
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∆Gf: defect formation energy                       

∆Gm: migration energy of the defect
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“The” coefficient of diffusion“The” coefficient of diffusion

Random motion (two successive jumps are independent) ⇒∑∑〈xixj〉 = 0 since 

for each xixj couple, one can find for an other atom, a same couple but exhibiting 

the opposite sign
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Correlated jumps (two successive jumps are not independent) ⇒∑∑〈xixj〉 ≠ 0 

and f < 1 (case of a vacancy in a matrix made of two types of atoms)
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θ : angle between the ith jump and the (i+1)th jump = const



“The” coefficient of diffusion“The” coefficient of diffusion
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〈ni〉: averaged number of jumps of type i performed during the time τ for the total 

diffusion length X in the direction x

Single type of jumps (= a the lattice parameter) in the x direction ⇒ i = 1 ⇒ 2aDx Γ=

General expression of the diffusion coefficient

XX DCafD == 2ην

Single type of jumps (= a the lattice parameter) in the x direction ⇒ i = 1 ⇒ aDx Γ=

CX: point defect concentration         

DX: point defect diffusion coefficient 



“The” coefficient of diffusion“The” coefficient of diffusion
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Remark 1: the activation energy can be found written in different ways, it always takes into 

account the energy of formation and migration of the point defect involved in the diffusion 

mechanism

Helmholtz free energy (T, V) 

Gibbs free energy (T, p)

Remark 2: “The” diffusion coefficient referrers actually to the diffusion coefficient 

observed when the point defects in the crystal are at equilibrium!

∑∑ +++−=
i

ii
i

ii dndnVdpSdTdG µµ

Example: diffusion at constant T, under constant hydrostatic pressure p

∆Vf: volume of formation of the defect 

∆Vm: volume of migration of the defect
VpEE a

p
a ∆−= mf VVV ∆+∆=∆with

Gibbs free energy (T, p)

X
eq
X DCD = at given T



Rule of thumbRule of thumb

Empirical rules
For a given crystal structure and a given bond type   

(for a given class of materials)

D(Tm) ∼ constant, Q/RTm ∼ constant and D0 ∼ constant

The diffusion coefficient of all materials with a given crystal structure and 

bond type will be approximately the same at the same fraction of their 










mT
T

D ~ constant

bond type will be approximately the same at the same fraction of their 

melting temperature

If melting temperature (Tm) �

� Bond strength � (∆Hm �)                                                                              

� Formation energy of defect � (∆Hf �) = concentration of defects �

� Coefficient of diffusion �



Rule of thumbRule of thumb

Self-diffusion in different types of materials



Rule of thumbRule of thumb
Bulk Self Diffusion in                       

pure metals                                                    

(fcc and hcp closed packed metals)

Diffusion mechanism: vacancy 

Empirical rules 

1-The diffusion coef. at the melting 

temp is roughly const.

Bulk Self diffusion in Silicon

Diffusion mechanism:                   

vacancy + interstitial

temp is roughly const.

D(Tm) ≈ 10 −−−−8 cm2/s

2-The activation energy scales with 

the melting T

Q / RTm ≈ 18

3 -The pre-exponential is roughly 

constant

D0 ≈ 1 cm2/s

D(Tm) ≈ 10 −−−−12 cm2/s

Q / RTm ≈ 35

D0 ≈ 10 4 cm2/s



Diffusion mechanismsDiffusion mechanisms

� Several types of point defects (single vacancy, double vacancies,…)                                       

� Proportion of each type of defect can vary with temperature                                                      

⇒ same type of atom can use simultaneously several types of 

mechanisms, exhibiting different diffusion coefficients

X: a defect X CX: 

concentration of defect X

CS: total concentration of atomic sites                                    

DA
eff: effective diffusion coefficient of atom A                         

CX/DX: probability to find a defect X close to an atom A                            

DX: diffusion coefficient of defect X = probability of migration



Diffusion mechanismsDiffusion mechanisms

Atoms interstitially dissolved ⇒ direct interstitial mechanism

i

i
A

A
AA DDD ==








 ∆−=
Tk

H
DD

B

A
m

A

i

i
exp0

No need to create a defect (∆Hf = 0) since interstitial sites are 

already present in the crystal

⇒ Activation energy depends only on migration energy (∆Hm)                                                   

⇒ Fastest bulk diffusion mechanism



Diffusion mechanismsDiffusion mechanisms

Atoms substitutionally dissolved and direct vacancy mechanism

VVA DCD =

Vacancies diffuse in the opposite direction to atoms                            

� Among the slower mechanisms (proportional to melting point)

( )









 ∆+∆−
=

Tk

HH
DD

B

V
m

V
f

A exp0



Diffusion mechanismsDiffusion mechanisms

Atoms substitutionally dissolved and interstitial mechanism

iS AIA ⇔+si AVA ⇔+

kick-out mechanismdissociation mechanism 

or                             

Frank-Turnbull reaction

� Substitutionally dissolved                                                                                           
� Move as interstitial defects                                                                                           
� Slower than direct interstitial mechanism, but faster than direct vacancy mechan.

( )eq
A

eq
A is

CC >>
i

S

ii
A

A

AA
AA D

C

C
DD ==



Diffusion mechanismsDiffusion mechanisms

Atoms substitutionally dissolved & atom-defect pair mechanism

AIIAS ⇔+AVVAS ⇔+

Interstitialcy mechanism                

(not dissociated)

Vacancy mechanism               

(partially dissociated: 3rd neighbors)

ss A

AIAI

A

AVAVAI
A

AV
AA C

DC

C

DC
DDD +=+=

� Substitutionally dissolved                                                                                           
� Move as a pair atom-defect (= new point defect)                                                                                 
� Slow mechanism (~ direct vacancy mechanism)

( )eq
AX

eq
A CC

s
>>



Diffusion mechanismsDiffusion mechanisms

Self-diffusion 〉〈⇔+ 0VI Frenkel’s reaction

V
eq
VI

eq
I

V
A

I
AA DCDCDDD +=+=

V
eq
V

V
AMetal DCDD ==

V
eq
VI

eq
I

V
Si

I
SiSi DCDCDDD +=+=

V
eq
V

V
GeGe DCDD ==

Examples:



Diffusion pathsDiffusion paths

Extended defects (dislocations, GBs, interfaces…) = fast diffusion paths

� generally, due to higher concentrations of point defects in or close to extended defects, 

dislocations

grain boundaries 

(GBs)

� generally, due to higher concentrations of point defects in or close to extended defects, 

diffusion is faster than in bulk ⇒ diffusion “short circuits”                                                                                                                            

� same diffusion mechanisms than lattice (bulk) diffusion, as well as new mechanisms due 

to properties and geometry of extended defects                                                                              

⇒ collective mechanisms (atomic chains) appear to be more important in GBs                         

⇒ on reconstructed surfaces diffusion can be strongly anisotropic and can use multi-mers     

� point defect formation energy is smaller in extended defects than in crystal bulk, but can 

significantly change from site to site in the extended defects                                                �

in extended defects, the vacancy formation energy is close to the one of interstitial           

⇒ the coexistence probability of vacancy and interstitial mechanisms is higher than in bulk 

(but the structure of extended defects can promote one mechanism versus the other)



Diffusion pathsDiffusion paths

Self-diffusion in a metal with 

the melting temperature Tm



Diffusion pathsDiffusion paths
Diffusion in poly-crystals

δ ∼ 0.5 nm                                                                

(checked experimentally and theoretically)

Kinetic regimes from 

Harrison

a

Kinetic regime “A” ⇒

g: geometrical factor (= 1 parallel grains)

Kinetic regime “C” ⇒
Henry segregation Cgb = sCg

Harrison



Diffusion pathsDiffusion paths
Diffusion in poly-crystals: kinetic regime “B”

constant source on the surface

s: segregation coefficient in the GB

Instantaneous source on the surface

+ 
Fick’s equation 

in grain and GB
with



Diffusion pathsDiffusion paths
Diffusion in poly-crystals: kinetic regime “B”

Lattice diffusion 

in grains

GB diffusion                             

+                                          

diffusion from GB to grains



Diffusion pathsDiffusion paths

Diffusion in poly-crystals

Te diffusion in Ag grain boundaries according 

to Herzig et al.
Regime “B”

Henry segregationΔHseg = −0.45 eV

Regime “C” 






 ∆−
=

Tk

H
ss

B

segexp0



Diffusion pathsDiffusion paths

Diffusion in a crystal with dislocations

Hart formula                                                          

Deff = α Dd + (1−α) Db

α = δ/d: proportion of sites in 

dislocations

Kinetic regime “A”

Dd: diffusion coefficient in dislocations             

Db: diffusion coefficient in bulk



Diffusion not at equilibriumDiffusion not at equilibrium

� Industrial process ⇒ materials not at thermodynamic equilibrium!          

� Point defect concentrations not at equilibrium                                                   

� Point defect reactions not at equilibrium                                                     �

Strong influence of point defect sources and sinks

� Diffusion coefficients not constant (varies with t, C…)

� Industrial process ⇒ Complex geometry (nanostructures with different 

types of interfaces, nano-crystalline…)types of interfaces, nano-crystalline…)

No analytical solution ⇒ numerical simulations
� Surface reactions can inject point defects in the bulk of the sample                                       

⇒ self-interstitial injection during Si oxidation                                                                                 

⇒ vacancy injection during Si nitridation                                                                                      

� Over-saturation of self-interstitials after atom implantation                                                        

� Irradiations



Source and sink influenceSource and sink influence

surface Back side

Pt source

Si bulk

Example: simple case of Pt diffusion in mono-crystalline Si bulk

Asymmetric profiles (especially at short annealing times) 

with a “U” shape



Source and sink influenceSource and sink influence

s
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i PtVPt
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Diffusion limited reactions
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PtPt −=

Three diffusing species
� interstitial Pt                               

� vacancies                                  

� Si self-interstitials

{R = 1 nm}
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Source and sink influenceSource and sink influence

IPtbPtfPtbVPtf
Pt CCkCkCkCCk

dt

dC
sisi

s

2211 −+−=

dx

dJ
CkCCkCCkCk

dt

dC
i

isss

i Pt
PtfIPtbVPtfPtb

Pt −−+−= 2211

Four different species: substitutional Pt, interstitial Pt, vacancies, and Si self-interstitials

dxdt isss PtfIPtbVPtfPtb 2211

dx

dJ
CkCCkkCCkCk

dt

dC I
PtfIVfbIPtbPtf

I
isi
−−−+−= 23322

dx

dJ
CCkkCCkCk

dt

dC V
IVfbVPtfPtb

V
is

−−+−= 3311



Source and sink influenceSource and sink influence

surface Back side Initial conditions
eq
V

bulk
V

surf
V CCC ==

eq
I

bulk
I

surf
I CCC ==

Si at equilibrium

eq
Pt

surf
Pt ss

CC =
eq
Pt

surf
Pt ii

CC =
Pt solubility limit

==

Point defects at equilibrium 

at the two surfaces

eq
V

surf
V CC =

eq
I

surf
I CC =

eq
Pt

surf
Pt ss

CC =
eq
Pt

surf
Pt ii

CC =
Diffusion under the Pt solubility 

limit at the surface with Pt

Boundary conditions

0== bulk
Pt

bulk
Pt is

CC no Pt in bulk

Unknown parameters

iPtD eq
Pt

eq
Pt

s

i

C

C
=αeq

Pts
C



Measurements of “the” diffusion coefficientMeasurements of “the” diffusion coefficient

X
eq
XA DCD =Diffusion coefficient measurements 

� Use materials as pure as possible (purification treatments)

� Point defects need to be at equilibrium

� Microstructure needs to be stable (no grain growth for poly-crystals for example)

� The knowledge of the driving force is needed to use the correct diffusion equation 

allowing to extract the correct diffusion coefficientallowing to extract the correct diffusion coefficient

� If use an analytical solution: be sure to be in the correct conditions corresponding to 

the used solution (geometry + initial and boundary conditions)

⇒ choose as simple as possible experimental conditions (reduce diffusion equation 

complexity and parameters)                                                                                                   

⇒ Perform a pre-annealing (stabilization of microstructure + point defect equilibrium)    

⇒ Perform several measurements at same temperature but for different times in same 

sample: check that D is constant (equilibrium point defect concentration + stable 

microstructure)                                                                                                              

⇒ Check microstructure before and after diffusion annealing



As diffusion 

profiles

Influence of impurities Influence of impurities 

without P

with P

� During co-diffusion of several impurities, impurity-impurity interactions, as 

well as impurity-point defect interactions modify the diffusion kinetic

As profiles measured in As-only 

samples and in As–P samples

As (squares) and P (triangles) profiles measured in 

the as-implanted sample (open symbols) and after 

annealing at 950 °C for 900 s (solid symbols)

N. Rodriguez, A. Portavoce et al., Thin Solid Films 518 (2010) 5022



Influence of impurities Influence of impurities 
Cu self-diffusion in GBs

Cu 99.9998%

Cu 99.999%

Ni 99.999%

Ni self-diffusion in GBs

800°C

Cu 99.999%

S.V. Divinski et al., Acta Mater. 58 (2010) 386

T. Surholt et al., Acta mater. 45 (1997) 3817

� Impurities decrease GB diffusion coefficients

Ni 99.6%

> ×10



Pressure effectPressure effect

Sb diffusion in Si                   

(vacancy-mediated)

∆V* = +0.07Ω

B diffusion in Si             

(interstitial-mediated)

∆V* = −0.17Ω

Hydrostatic pressure

Y. Zhao et al., Appl. Phys. Lett. 74 (1999) 31

Y. Zhao et al., Appl. Phys. Lett. 75 

(1999) 941

� Hydrostatic pressure decreases the diffusion coefficient of vacancy-mediated 

elements and increases the diffusion coefficient of interstitial-mediated elements



Pressure effectPressure effect
Biaxial pressure

∆Vb = −0.28Ω

Sb diffusion in Si(Ge10%) 

(vacancy-mediated) 

B diffusion in Si(Ge10%) 

(self-interstitial-mediated) 

A. Portavoce et al., Phys. Rev. B 69 (2004) 

155415

� Biaxial pressure increases the diffusion coefficient of vacancy-mediated 

elements and decreases the diffusion coefficient of interstitial-mediated elements

∆Vb = −0.34Ω
∆Vb = +1.53Ω

A. Portavoce et al., J. Appl. Phys. 96 (2004) 

3158
A. Portavoce et al., Phys. Rev. B 69 (2004) 155415



NanometricNanometric--size effectsize effect

Dnano /Dgb ~ 3×103

Dnano /Dgb ~ 1.7×102

Dnano /Dgb ~ 3×103

Self-diffusion

���� GB diffusion faster in nano-crystalline layers?

Dnano /Dgb ~ 103

Dnano /Dgb ~ 2×102

Dnano /Dgb ~ 3×101

Dnano /Dgb ~ 3×103

Dnano /Dgb ~ 1.5×106

Dnano /Dgb ~ 7×103

Impurity diffusion

Impurity diffusion



NanometricNanometric--size effectsize effect

Top view

� Identical GB diffusion in micro- and nano-crystalline layers                                                        

� Fast diffusion in nano-crystalline layers = fast diffusion in Triple Junctions + 

faster lattice diffusion in nano-crystal

A. Portavoce et al., J. Appl. Phys. 104 (2008) 104910             

A. Portavoce et al., Appl. Phys. Lett. 96 (2010) 214102



Grain boundary motionGrain boundary motion

migration rate = const,             

different fraction of mobile GBs

fraction of mobile GBs = const 

different migration rate

Results of 2D simulations of diffusion during grain growth

� Same diffusion coefficient in moving GBs and stationary GBs (P. Zieba, Interface Science 

11 (2003) 51) 

� GB migration modifies significantly the diffusion profiles                                                                   

⇒ for small fraction of mobile GBs, the GB diffusion coefficient can be extracted from the 

deepest part of the profile using usual solutions of the Fick equation (regime “B”)



Electromigration Electromigration 

Electron scattering on ions ⇒ electrical resistance

� Low current density: no displacement of ions                                  

scattering from phonon vibrations generates Joule heating

� High current density (> 104 A/cm2): transport of current can displace the ions 

and can influence atom transport in the crystal ⇒ Electromigration

Electromigration = mass transport due to the electric field and the charged carriers 

⇒ void and extrusion formation

Example in microelectronics

a 5 µm wide line of Al of thickness 0.2 µm subjected to a current of 1 mA 

experiences a current density of 105 A/cm2

line cross-section �⇒ current density �



Electromigration Electromigration 

Electromigration in pure metal

Electric field the only driving force  J = CMF
CMF

x

C
DJ +

∂
∂−=Fick’s law

� Electromigration is due to the combination of thermal and electrical effects      

� Occurs at T ∼ 3Tm/4 in bulk metal and at T ∼ Tm/2 in a polycrystalline thin film                

⇒ T at which a large number of atoms undergo a random walk process⇒ T at which a large number of atoms undergo a random walk process

Atom on a saddle point

� greater contribution to the resistance to the 

electric current than an atom on a lattice site                 

� greater electron scattering effect                               

� greater “electron wind force”

Atom in saddle point 

random walk

Atom in saddle point 

electron wind force



Electromigration Electromigration 

εε eZZeZF wdel ][ *** +==

Driving force F: two components

1/ Electrostatic field effect on the diffusing atoms (= ions)                                                                

2/ Momentum exchange of the moving charge carriers with the diffusing atoms

εεεε: electric field                                                                                                             

e: charge of an electron                                                                                                     

Z*: effective charge number                                                                                                  

Z*
el: nominal valence of the diffusion ion in the metal without screening effect                                                 

Good conductor: Z*
wd ∼ 10

Momentum exchange effect > electrostatic field effect in metals

Z el: nominal valence of the diffusion ion in the metal without screening effect                                                 

Z*
wd: charge number representing the momentum exchange effect = “electron wind force”

εeZ
Tk

D
CCMFCJ

B

em *==><= v

Without grain boundaries

εδ
eZ

Tdk

D
CJ b

B

b
b

em
b

*=

With grain boundaries



Electromigration Electromigration 
� Electromigration is a reliability concern because it can lead to interconnect failure

� Where there is a net depletion of atoms, local stresses become increasingly tensile       

� voiding

Failure by open circuit + In the case of interconnects clad in refractory layers or liners, the 

electric current can shunt through these layers once a void has formed in the interconnect, 

which will lead to a resistance increase

� Where there is a net accumulation of atoms, the local stresses become increasingly 

compressive � extrusionscompressive � extrusions

Failure by short circuit if the extruded metal touches a neighboring interconnect



Electromigration Electromigration 

� In contrast to Al-based interconnects, microstructure does not play a dominant role in 

the electromigration of today’s Cu-based interconnects

� The top surface/interface of Cu is the fastest diffusion path (Ds >> Dgb)

� Differences in thermal coefficients of expansion (TCE) at interfaces support an 

enhanced void formation induced by electromigration due to mechanical stresses                      

� The TCE ratio is 2.5 for Cu/Ta and 6.6 for Cu/Si3N4

Diffusion coefficients at interfaces?
⇒ more and more important in nanotechnology (lots of different interfaces in a 

same structure)                                                                                                              

⇒ today, no systematic studies                                                                                            

⇒ need new experimental scheme to measure interface diffusion coefficients
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