DE LA RECHERCHE À L'INDUSTRIE

CNIS

RESIDUAL STRESSES

ANF Métallurgie Fondamentale Vincent Klosek (CEA / DSM / IRAMIS / LLB)

www.cea.fr

23/10/2012

Residual Stresses ?

Static multiaxial stresses within an isolated solid in mechanical equilibrium, neither subjected to external force nor to external moment

> → Result from the thermo-mechanical history of the considered material

Notion of stress

- Modeling internal efforts $\rightarrow 2^{nd}$ order symmetric tensor
- Cauchy stress tensor defined at a point: defines the linear application which determines the stress vector T for any facet through this point

$$T(\mathbf{M},n) = \mathbf{\sigma} \cdot n$$

σ traduces « contact actions » between material particles

Notion of strain

What one can measure... (one does not measure a force → one makes it work!)

Strain tensor:

allows to express lengths and angles variations during a transformation

Small Perturbations Hypothesis \rightarrow linearised tensor ε :

$$\boldsymbol{\varepsilon}(X) = \frac{1}{2} (\nabla \boldsymbol{\xi}(X) + {}^{t} \nabla \boldsymbol{\xi}(X))$$

Constitutive Laws

- Local relations between σ , ε and T
- Thermoelasticity in the framework of infinitesimal strain theory (→ linearized relation):

$$\boldsymbol{\sigma} = \boldsymbol{A} : \boldsymbol{\varepsilon} - \mathbf{k} (T - T_0)$$

Isotropic elastic material, isothermal transformation:

$$\sigma_{ij} = \lambda \cdot (\varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}) \cdot \delta_{ij} + 2\mu\varepsilon_{ij}$$

Young modulus:

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}$$

 $\nu = \frac{\lambda}{2(\lambda + \mu)}$

Strain Incompatibility

Field ε **must be compatible** (\Leftrightarrow derived from a displacement field):

 $\operatorname{rot}^{g}(\operatorname{rot}^{d} \boldsymbol{\varepsilon}) = 0$

What if not ? Loss of continuity !

If strain field not compatible BUT continuity remains
→ ∃ additional elastic field so that the total strain field is compatible!

$$\boldsymbol{\varepsilon}^{\text{total}} = \boldsymbol{\varepsilon}^{\text{stress free}} + \boldsymbol{\varepsilon}^{\text{elastic accommodation}}$$

 \rightarrow Internal stress associated with elastic accommodation

Strain Incompatibility

Application of a compatible strain field to a heterogeneous material:

→ RESIDUAL STRESSES

Main sources \rightarrow various scales

- Atomic scale: point defects (very local influence)
- Single crystal scale: dislocations, precipitates, etc...

Polycrystal scale: → Plastic strain incompatibilities

- \rightarrow phase transformations
- \rightarrow thermal strains...

Various scales...

$$\underline{\underline{\sigma}}^{res}(\mathbf{X}) = \underline{\underline{\sigma}}^{I}(\mathbf{X}) + \underline{\underline{\sigma}}^{II}(\mathbf{X}) + \underline{\underline{\sigma}}^{III}(\mathbf{X})$$

1st order stresses: in equilibrium at the whole sample scale (\rightarrow scale considered by engineers for structures calculations)

$$\underline{\underline{\sigma}}^{I}(\mathbf{X}) = \frac{1}{V} \int_{V} \underline{\underline{\sigma}}^{res}(\mathbf{X})$$

<u>2nd order stresses</u>: in equilibrium at the scale of a group of crystallites

$$\underline{\underline{\sigma}}^{II}(\mathbf{X}) = \frac{1}{v} \int_{v} \underline{\underline{\sigma}}^{res}(\mathbf{X})$$

<u>3rd order stresses</u>: in equilibrium at the scale of a crystallite
 → Defects of crystallographic lattice (dislocations, precipitates, vacancies, grain

boundaries, etc...)

$$\underline{\underline{\sigma}}^{III}(\mathbf{X}) = \underline{\underline{\sigma}}^{res}(\mathbf{X}) - (\underline{\underline{\sigma}}^{I}(\mathbf{X}) + \underline{\underline{\sigma}}^{II}(\mathbf{X}))$$

Why evaluating them is so important?...

- Strongly influence the mechanical behaviour of a component
 - harmful: premature fracture (fatigue, cracking, etc...)
 - **favourable**: example of prestress treatments (shot peening, etc...)
 - → Significant effects on performance, safety, reliability of a component, a structure.
 - → Improvement of the processes (thermal or mechanical treatment required ?...)

At a more fundamental point of view:

Junderstanding of the physical deformation mechanisms, and how they interact

RESIDUAL STRESSES ?

Examples of significant manifestations

Drying of wood

Stress-induced corrosion

Silver Bridge (WV, USA), 1967

CEA | 23 OCTOBRE 2012 | PAGE 11

Experimental determination of elastic strains

Destructive or semi-destructive methods

Non destructive methods

(semi-) destructive methods

- <u>Principle</u>: some matter is removed \rightarrow mechanical equilibrium is affected \rightarrow system tends to reach a new equilibrium \rightarrow it changes its shape
- Hole drilling method (incremental or not) or ring core method

plane stress approximation, isotropic elasticity law, empirical coefs to determine...

Contour method

Non destructive methods

Ultrasonic technique

dependence of the propagation velocity of ultrasonic waves on stress state (non linear elasticity, use of acoustoelastic coefficients)

Barkhausen noise (ferromagnetic materials)
 ⇔ Discontinuous motion of Bloch walls
 stress ⇔ inverse magnetostrictive effect
 → technique very sensitive to microstructural defects (...tricky to isolate contributions)

Raman spectrometry

⇔ dependence of optic phonon frequencies on stress state

Diffraction

Crystal lattice is used as a strain gauge...

Theory of diffraction by distorted crystals (Krivoglaz, 1969)

-Intensity distribution *I*(**K**) directly related to the projection of the relative displacement between atoms Δu along **K**

→ <u>Directional measurement</u>!

$$\varepsilon_{KK}(\mathbf{x}) = \frac{1}{K^2} \mathbf{K} \cdot \underbrace{\varepsilon}_{=}(\mathbf{x}) \cdot \mathbf{K} = \lim_{n \to 0} \frac{\Delta \mathbf{u} \cdot \mathbf{K}}{nK}$$

- Periodicity breaking → diffraction peak broadening for K || g

- Homogeneous deformation → diffraction peak shift (back to Bragg law!)
- Diffraction technique only sensitive to elastic strains !

Selectivity of diffraction methods:

 \rightarrow Strain is measured for grains in diffraction condition only !!!

Selectivity of diffraction methods:

 \rightarrow Strain is measured for grains in diffraction condition only !!!

What do we measure ?...

Ideal for coupling with homogenization techniques!BRE 2012 | PAGE 19

Interpretation of peak shifts

Stress at a given point **x**:

Strain:

 $\varepsilon(\mathbf{x}) = \mathbf{S}(\mathbf{x}) : \boldsymbol{\sigma}(\mathbf{x})$

General Formulation :

$$< \mathcal{E}_{KK} >_{\Omega} = \frac{\mathbf{K} \otimes \mathbf{K}}{K^2} : \langle \mathbf{S} : \mathbf{B} \rangle_{\Omega} : \overline{\mathbf{\sigma}} + \frac{\mathbf{K} \otimes \mathbf{K}}{K^2} : \langle \mathbf{S} : \mathbf{\sigma}_{res} \rangle_{\Omega}$$

The « $sin^2 \psi$ law »...

1st approximation
$$\boldsymbol{\sigma}_{res} = \mathbf{0} \implies \langle \boldsymbol{\varepsilon}_{KK} \rangle_{\Omega} = \frac{\mathbf{K} \otimes \mathbf{K}}{K^2} : \langle \mathbf{S} : \mathbf{B} \rangle_{\Omega} : \overline{\boldsymbol{\sigma}}$$

2nd approximation: isotropic elasticity...

Example 1: welding

(b) après refroidissement (volume chauffé séparé)

Determination by means of neutron diffraction

Tensile residual stress

Cea

EXAMPLES

Example 2: Intergranular stresses in Zr

Example 2: Intergranular stresses in Zr

Experimental observations (neutron diffraction)

Importance to take microstructure into account for data analysis !!!

- Various scales various mechanisms : need to consider physical, chemical and mechanical phenomena (i.e. metallurgical phenomena!)
- Stress fields are most of the time **complex** and **heterogeneous**
- Characterization of residual stresses is of fundamental and applied importances (but relevant scales are not the same!)
- Various techniques to determine residual stresses
 Diffraction (RX & neutrons) allows to characterize intra- and intergranular heterogeneities ideal for coupling with micromechanical modelling
 BUT in every case: interpretating measurement results is far from being trivial
 RESIDUAL STRESS MEASUREMENT I
- Numerical prediction of residual stresses within components ?

 • optimization of geometries, processes, performances (ex: LASMIS @UTT...)

Commissariat à l'énergie atomique et aux énergies alternativesDSMCentre de Saclay | 91191 Gif-sur-Yvette CedexIRAMT. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XXLLB

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019